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Let oy, as,as,... € some nice ring
Expand as a formal power series
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Stieltjes continued fraction

Sp(a) are polynomials in variables cx.
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Consider a Dyck path, let's say

Weight = o 10282038503 87
Assign weights:
e ~ from height (i-1) i — 3;
@ \ from height i > (i - 1) — o
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Stieltjes continued fraction

Theorem (Flajolet 1980)

Stieltjes-Rogers polynomial S,,(a, 3) is the weighted sum over all Dyck
paths of semilength n.
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Stieltjes continued fraction

Theorem (Flajolet 1980)

Stieltjes-Rogers polynomial S,,(a, 3) is the weighted sum over all Dyck
paths of semilength n.

Also, Jacobi-Rogers polynomials <> Motzkin paths
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Weighted sum:

100 + 20[%@2 + alag + a:f = S3(a)
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Some known S-fraction coefficients

e Catalan numbers (number of Dyck paths):
a'sare 1,1,1,1,...
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Some known S-fraction coefficients

e Catalan numbers (number of Dyck paths):
a'sare 1,1,1,1,...

o n! (number of permutations):
a'sare 1,1,2,2,3,3,...

@ Bell numbers (number of set partitions):
a'sare1,1,1,2,1,3,1,4...

o (2n - 1)!! (number of involutions without fixed points):
a'sare 1,2,3,4,5,...
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A continued fraction due to Euler (1760)

1
T+1l+22 + 313 +alt* + ... = 17
1_1 1-t
‘1 2.t
_1 2t
_1 3t
_ y
1 3
1—
The sequence of a’s are 1,1,2,2,3,3,. ...
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Several combinatorial proofs are known

@ Frangon-Viennot bijection 1979
o Foata-Zeilberger bijection 1990
@ Biane bijection 1993
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Another continued fraction due to Euler (1760)

In fact,

l+at+a(z+1)t2+a(z+1)(z+2)t3+... =

The sequence of a's are x,1, (x +1),2, (x +2),3,....
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Another continued fraction due to Euler (1760)

In fact,
2 3 1
l+zt+z(z+1)t"+a(x+1)(z+2)t7+... = —7
1-
1- 1-¢
1 (x+1)-t
- , 2-¢
1 (x+2)-t
1
1—
The sequence of a's are x,1, (x +1),2, (x +2),3,....

Note that on the left hand side x counts the number of cycles.
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Define P, (z,y,u,v) such that
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Note that
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Define P, (z,y,u,v) such that

. 1x-t :Tgpn(x,y,u,v)t”
1 vt
1 (z+u)-t
1 (y+v)-t
1 (z+2u)-t
1 (y+2v)-t
1--.
Note that

P.(1,1,1,1)=nl= 3 1

oeS,

Pz, 1,1,1)=z(z+1)(x+2)(z+n-1)= Z pHEcycles in o

geS,

Question: What permutation statistics do y, u,v count?

10 1 20



Specialisations of P,(x,y,u,v)

e Catalan numbers (number of Dyck paths):
a'sare 1,1,1,1,...

e n! (number of permutations):
a'sare 1,1,2,2,3,3,...

@ Bell numbers (number of set partitions):
a'sare1,1,1,2,1,3,1,4. ..

e (2n - 1)!! (number of involutions without fixed points):
a'sare 1,2,3,4,5,...
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Theorem (Sokal-Zeng 2022)
(a)

Pn(x, Y, u, 11) _ Z xarec(o‘)yerec(cr)un—exc(a)—arec(a)Uexc(o‘)—erec(o‘)

oeS,

(b)

P, (.’l?, y,u, ’U) _ Z xcyc(o‘)yerec(o‘)un—exc(a)—cyc(a’)Uexc(a)—erec(a)

0eS,
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Theorem (Sokal-Zeng 2022)
(a)

Pn(x, Y, u, U) _ Z xarec(o‘)yerec(a)un—exc(a)—arec(a)Uexc(o‘)—erec(o‘)

oeS,

(b)

P, (.’13, y,u, ’U) _ Z $cyc(o‘)yerec(o‘)un—exc(a)—cyc(a‘)Uexc(a)—erec(a)

0eS,

@ arec - antirecords or right-to-left minima
@ rec - records or left-to-right maxima
@ erec - exclusive records i.e. records that are not anti-records

@ exc - excedances i.e. (4,0(4)) such that i <o (%)
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In fact, special case of a much stronger theorem
Interpretations available for not just 4 variables
But 5 families of infinitely many variables!!!

Similar results were also found by Blitvic-Steingrimsson (2021) at around
the same time

Randrianarivony in a little-known paper had actually interpreted almost
all of the variables for different statistics in 1998!!!
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We have a combinatorial interpretation for

1- 2=
1--

i.e. a'sgiven by 1,1,2,2.3,3,4,4,.... We can also read off statistics
from this by putting in variables.
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We have a combinatorial interpretation for

1- 2=
1--

i.e. a'sgiven by 1,1,2,2.3,3,4,4,.... We can also read off statistics
from this by putting in variables.

Question: Combinatorially understand a's 1%, 1%, 2% 2k 3k 3k
"multivariately”

@ k=1 quasi-linear case: n!
@ k =2 quasi-quadratic case: Median Genocchi numbers

@ k =3 quasi-cubic case: Not on OEIS!!!

14 1 30



Linear «

e Catalan numbers (number of Dyck paths):
a'sare 1,1,1,1,...
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Some combinatorial sequences whose o grow quadratically

@ Genocchi numbers A11050

@ Median Genocchi numbers A00543

@ Once shifted median Genocchi numbers A00036
Tangent numbers A00018

@ Secant numbers A00036

o Even Springer numbers A00028

16 1 20



Genocchi numbers

The Genocchi numbers are given by

t2n+2

ttan( ) Z gnm
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Genocchi numbers

The Genocchi numbers are given by

ttan( ) Zgn(;%r;

The first few numbers are 1,1,3,17,155,2073,....
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Combinatorial Interpretation

Genocchi numbers g,, are counted by

#{0 € G9,]2i >0(2i) and 2i -1 <o(2i - 1)}
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Combinatorial Interpretation

Genocchi numbers g,, are counted by

#{0 € G9,]2i >0(2i) and 2i -1 <o(2i - 1)}

D-e-semiderangement
Median Genocchi numbers h,, are counted by

#{0€69,|2i >0(2i) and 2i -1 <0(20-1)}

D-derangements
Also hy+1 counted by

#{0 € Gy,|2i > 0(2i) and 2i -1 < o(2i - 1)}

D-permutations or Dumont-like permutations (introduced by Lazar and
Wachs 2019)
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Non-example
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Example of a D-permutation

EZM(L'-— D - povmmlaliows
20 2 o) 2i-1 SO 1)

20 1 20



Continued fractions

The g,, have an S-fraction with a's
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Continued fractions

The g,, have an S-fraction with a's
1-1,1-2,2-2,2-3,3-3,3-4,...
The h,, have an S-fraction with «a's

1,1,4,4,9,9...

and the h,,1 have an S-fraction with a's

1-2,1-2,2-3,2-3,3-4,3-4,...

Want a unifying continued fraction for all three sequences.
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Classical S-fractions with integer @ due to Viennot (1981)




Classical S-fractions with integer @ due to Viennot (1981)

Pan-Zeng (2021) have a multivariate continued fraction in 8 variables
with linear statistics for a different combinatorial interpretation (even-odd
descent permutations).

279 1 30
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We have a T-fraction (Thron-type continued fractions):
Constructed by using

o excedences ((i,0(i)) with ¢ < o(¢)) with parities (e or o)
@ anti-excedances with parities
o fixed points with parities

@ records, anti-records
Pn(xeea Zeo, Uees Ueo; Yoo, Yoey Voos Voey 2oy Rey Wo, we) ==

earecaexcee (o) .earecaexceo(c), nraexcee(o), nraexceo(o)
E Lee Leo Uee Ueo X

0EDay,
erecexcoo(o) , erecexcoe(o) , nrexcoo(o ), nrexcoe(o)
0o Yoe Voo Uoe X

raro(o) jrare(o),, nrfixo(o), nrfixe(o)
2y 2z we, wy .

24 | 30



P (Tee, Teo, Uee; Ueos Yoos Yoe, Voos Voey Zoy Zes Woy We) =

earecaexcee (o) .earecaexceo(o), nraexcee(o), nraexceo(o)
E Lee Leo Uee Ueg x

0€Day
Yoo

Z(l;aro(g) Z‘:are(n) ,w(r)uﬁxo(ﬂ) w:rﬁxe(o) )

erecexcoo(o) , erecexcoe(o) , nrexcoo(o ), ,nrexcoe(o)
Yoe Yoo Voe X

1
t
1= ot - a1
Olgt
1-
a3t
1-—
014?5
1- ast
1- =
where
51 = ZeRo

k-1 = [Teo + (B = 1)Ueo] - [Yoe + (K = 1)oc]

og = [Tee + (k= 1 Uee + We ] - [Yoo + (k= 1) Vo0 + wo].

25 | 30



General form of a T-fraction

alt
Oégt
Oé3t
a4t

;
1- 6,0 - 222

1-6ot -

1-01t-
1 - 09t -

1-43t—

26 | 20



General form of a T-fraction

alt
Oégt
Oé3t
a4t

;
1- 6,0 - 222

1-6ot -

1-01t-
1 - 09t -

1-43t—

26 | 20



Schroder path

Schroder path - Path on non-negative quadrant
e starting at (0,0)
@ ending at (2n,0)
e with steps (1,1), (1,-1),
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Schroder path

Schroder path - Path on non-negative quadrant
e starting at (0,0)
@ ending at (2n,0)
e with steps (1,1), (1,-1), (2,0)
Assign weights:
e step (1,1) () from height (i -1) - ¢ —1
@ step (1,-1) () from height i - (i—-1) — o
@ step (2,0) from height i - i — §;
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Schroder path

Schroder path - Path on non-negative quadrant
e starting at (0,0)
@ ending at (2n,0)
e with steps (1,1), (1,-1), (2,0)
Assign weights:
e step (1,1) () from height (i -1) - ¢ —1
@ step (1,-1) () from height i - (i—-1) — o
@ step (2,0) from height i - i — §;

Theorem (Elvey Price - Sokal 2020)

Thron-Rogers polynomial T,,(cx,d) is the weighted sum over all Schréder
paths of semilength n.

27 1 30



Bijection from D-permutations to labelled Schroder paths

We have a bijection from D-permutations to labelled Schroder paths with
step (2,0) only at height 0.
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Bijection from D-permutations to labelled Schroder paths

We have a bijection from D-permutations to labelled Schroder paths with
step (2,0) only at height 0.
Two steps involved:

@ Describe surjection from D-permutations to Schroder paths with
level steps only at height O allowed.

@ Assign choice of labels

28 1 30



Description of Step 1

Let o be a D-permutation on 2n letters.
o If o71(7) is even, step i is 7
o If ¢71(7) is odd, step i is

209 | 30



Thank you



