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Let α1, α2, α3, . . . ∈ some nice ring

Expand as a formal power series

1

1 −
α1t

1 −
α2t

1 − ⋱
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Stieltjes continued fraction

=
∞
∑
n=0

Sn(α)
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¶

Stieltjes-Rogers polynomials

tn

Sn(α) are polynomials in variables α.
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Consider a Dyck path, let’s say

α1

α2

α3

α4α4

α3

Weight = α1β1α2β2α
2
3β

2
3α

2
4β

2
4

Assign weights:

↗ from height (i − 1)→ i — βi

↘ from height i→ (i − 1) — αi
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1

1 −
α1β1t

1 −
α2β2t

1 − ⋱
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Stieltjes continued fraction

=
∞
∑
n=0

Sn(α,β)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Stieltjes-Rogers polynomials

tn

Theorem (Flajolet 1980)

Stieltjes-Rogers polynomial Sn(α,β) is the weighted sum over all Dyck
paths of semilength n.

Also, Jacobi-Rogers polynomials ↔ Motzkin paths
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n = 3

α1

α2

α3

α1α2α3

α1α1

α2

α2
1α2

α1

α2

α1

α2
1α2

α1

α2α2

α1α
2
2

α1α1α1

α3
1

Weighted sum:

α1α2α3 + 2α
2
1α2 + α1α

2
2 + α

3
1 = S3(α)
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Some known S-fraction coefficients

Catalan numbers (number of Dyck paths):
α’s are 1,1,1,1, . . .

n! (number of permutations):
α’s are 1,1,2,2,3,3, . . .

Bell numbers (number of set partitions):
α’s are 1,1,1,2,1,3,1,4 . . .

(2n − 1)!! (number of involutions without fixed points):
α’s are 1,2,3,4,5, . . .

6 30
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A continued fraction due to Euler (1760)

Theorem

1 + 1!t + 2!t2 + 3!t3 + 4!t4 + . . . =
1

1 −
1 ⋅ t

1 −
1 ⋅ t

1 −
2 ⋅ t

1 −
2 ⋅ t

1 −
3 ⋅ t

1 −
3 ⋅ t

1 − ⋱

The sequence of α’s are 1,1,2,2,3,3, . . ..
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Several combinatorial proofs are known

Françon-Viennot bijection 1979

Foata-Zeilberger bijection 1990

Biane bijection 1993

8 30



Another continued fraction due to Euler (1760)

Theorem

In fact,

1+xt+x(x+1)t2+x(x+1)(x+2)t3+ . . . =
1

1 −
x ⋅ t

1 −
1 ⋅ t

1 −
(x + 1) ⋅ t

1 −
2 ⋅ t

1 −
(x + 2) ⋅ t

1 −
3 ⋅ t

1 − ⋱

The sequence of α’s are x,1, (x + 1),2, (x + 2),3, . . ..

Note that on the left hand side x counts the number of cycles.
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Define Pn(x, y, u, v) such that

1

1 −
x ⋅ t

1 −
y ⋅ t

1 −
(x + u) ⋅ t

1 −
(y + v) ⋅ t

1 −
(x + 2u) ⋅ t

1 −
(y + 2v) ⋅ t

1 − ⋱

=
∞
∑
n=0

Pn(x, y, u, v)t
n

Note that
Pn(1,1,1,1) = n! = ∑

σ∈Sn

1

Pn(x,1,1,1) = x(x + 1)(x + 2)⋯(x + n − 1) = ∑
σ∈Sn

x#cycles in σ

Question: What permutation statistics do y, u, v count?

10 30



Define Pn(x, y, u, v) such that

1

1 −
x ⋅ t

1 −
y ⋅ t

1 −
(x + u) ⋅ t

1 −
(y + v) ⋅ t

1 −
(x + 2u) ⋅ t

1 −
(y + 2v) ⋅ t

1 − ⋱

=
∞
∑
n=0

Pn(x, y, u, v)t
n

Note that
Pn(1,1,1,1) = n! = ∑

σ∈Sn

1

Pn(x,1,1,1) = x(x + 1)(x + 2)⋯(x + n − 1) = ∑
σ∈Sn

x#cycles in σ

Question: What permutation statistics do y, u, v count?

10 30



Define Pn(x, y, u, v) such that

1

1 −
x ⋅ t

1 −
y ⋅ t

1 −
(x + u) ⋅ t

1 −
(y + v) ⋅ t

1 −
(x + 2u) ⋅ t

1 −
(y + 2v) ⋅ t

1 − ⋱

=
∞
∑
n=0

Pn(x, y, u, v)t
n

Note that
Pn(1,1,1,1) = n! = ∑

σ∈Sn

1

Pn(x,1,1,1) = x(x + 1)(x + 2)⋯(x + n − 1) = ∑
σ∈Sn

x#cycles in σ

Question: What permutation statistics do y, u, v count?

10 30



Define Pn(x, y, u, v) such that

1

1 −
x ⋅ t

1 −
y ⋅ t

1 −
(x + u) ⋅ t

1 −
(y + v) ⋅ t

1 −
(x + 2u) ⋅ t

1 −
(y + 2v) ⋅ t

1 − ⋱

=
∞
∑
n=0

Pn(x, y, u, v)t
n

Note that
Pn(1,1,1,1) = n! = ∑

σ∈Sn

1

Pn(x,1,1,1) = x(x + 1)(x + 2)⋯(x + n − 1) = ∑
σ∈Sn

x#cycles in σ

Question: What permutation statistics do y, u, v count?

10 30



Define Pn(x, y, u, v) such that

1

1 −
x ⋅ t

1 −
y ⋅ t

1 −
(x + u) ⋅ t

1 −
(y + v) ⋅ t

1 −
(x + 2u) ⋅ t

1 −
(y + 2v) ⋅ t

1 − ⋱

=
∞
∑
n=0

Pn(x, y, u, v)t
n

Note that
Pn(1,1,1,1) = n! = ∑

σ∈Sn

1

Pn(x,1,1,1) = x(x + 1)(x + 2)⋯(x + n − 1) = ∑
σ∈Sn

x#cycles in σ

Question: What permutation statistics do y, u, v count?

10 30



Specialisations of Pn(x, y, u, v)

Catalan numbers (number of Dyck paths):
α’s are 1,1,1,1, . . .

n! (number of permutations):
α’s are 1,1,2,2,3,3, . . .

Bell numbers (number of set partitions):
α’s are 1,1,1,2,1,3,1,4 . . .

(2n − 1)!! (number of involutions without fixed points):
α’s are 1,2,3,4,5, . . .

11 30



Theorem (Sokal-Zeng 2022)

(a)

Pn(x, y, u, v) = ∑
σ∈Sn

xarec(σ)yerec(σ)un−exc(σ)−arec(σ)vexc(σ)−erec(σ)

(b)

Pn(x, y, u, v) = ∑
σ∈Sn

xcyc(σ)yerec(σ)un−exc(σ)−cyc(σ)vexc(σ)−erec(σ)

arec - antirecords or right-to-left minima

rec - records or left-to-right maxima

erec - exclusive records i.e. records that are not anti-records

exc - excedances i.e. (i, σ(i)) such that i < σ(i)
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In fact, special case of a much stronger theorem

Interpretations available for not just 4 variables

But 5 families of infinitely many variables!!!

Similar results were also found by Blitvic-Steingrimsson (2021) at around
the same time

Randrianarivony in a little-known paper had actually interpreted almost
all of the variables for different statistics in 1998!!!
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Question

We have a combinatorial interpretation for

1

1 −
1 ⋅ t

1 −
1 ⋅ t

1 −
2 ⋅ t

1 −
2 ⋅ t

1 − ⋱

i.e. α’s given by 1,1,2,2,3,3,4,4, . . .. We can also read off statistics
from this by putting in variables.

Question: Combinatorially understand α’s 1k,1k,2k,2k,3k,3k, . . .
”multivariately”

k = 1 quasi-linear case: n!

k = 2 quasi-quadratic case: Median Genocchi numbers

k = 3 quasi-cubic case: Not on OEIS!!!

14 30
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Linear α

Catalan numbers (number of Dyck paths):
α’s are 1,1,1,1, . . .

n! (number of permutations):
α’s are 1,1,2,2,3,3, . . .

Bell numbers (number of set partitions):
α’s are 1,1,1,2,1,3,1,4 . . .

(2n − 1)!! (number of involutions without fixed points):
α’s are 1,2,3,4,5, . . .

15 30
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Some combinatorial sequences whose α grow quadratically

Genocchi numbers A11050

Median Genocchi numbers A00543

Once shifted median Genocchi numbers A00036

Tangent numbers A00018

Secant numbers A00036

Even Springer numbers A00028

16 30



Genocchi numbers

The Genocchi numbers are given by

t tan(
t

2
) =

∞
∑
n=0

gn
t2n+2

(2n + 2)!

The first few numbers are 1,1,3,17,155,2073, . . ..
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Combinatorial Interpretation

Genocchi numbers gn are counted by

#{σ ∈S2n∣2i > σ(2i) and 2i − 1 ≤ σ(2i − 1)}

D-e-semiderangement
Median Genocchi numbers hn are counted by

#{σ ∈S2n∣2i > σ(2i) and 2i − 1 < σ(2i − 1)}

D-derangements
Also hn+1 counted by

#{σ ∈S2n∣2i ≥ σ(2i) and 2i − 1 ≤ σ(2i − 1)}

D-permutations or Dumont-like permutations (introduced by Lazar and
Wachs 2019)
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Non-example
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Example of a D-permutation
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Continued fractions

The gn have an S-fraction with α’s

1 ⋅ 1,1 ⋅ 2,2 ⋅ 2,2 ⋅ 3,3 ⋅ 3,3 ⋅ 4, . . .

The hn have an S-fraction with α’s

1,1,4,4,9,9 . . .

and the hn+1 have an S-fraction with α’s

1 ⋅ 2,1 ⋅ 2,2 ⋅ 3,2 ⋅ 3,3 ⋅ 4,3 ⋅ 4, . . .

Want a unifying continued fraction for all three sequences.
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Classical S-fractions with integer α due to Viennot (1981)

Pan-Zeng (2021) have a multivariate continued fraction in 8 variables
with linear statistics for a different combinatorial interpretation (even-odd
descent permutations).
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Main Theorem

We have a T-fraction (Thron-type continued fractions):
Constructed by using

excedences ((i, σ(i)) with i < σ(i)) with parities (e or o)

anti-excedances with parities

fixed points with parities

records, anti-records

24 30



1

1 − δ0t −
α1t

1 −
α2t

1 −
α3t

1 −
α4t

1 −
α5t

⋱

where
δ1 = zezo

α2k−1 = [xeo + (k − 1)ueo] ⋅ [yoe + (k − 1)voe]

α2k = [xee + (k − 1)uee +we] ⋅ [yoo + (k − 1)voo +wo].
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General form of a T-fraction

1

1 − δ0t −
α1t

1 − δ1t −
α2t

1 − δ2t −
α3t

1 − δ3t −
α4t

1 − δ4t −
α5t

⋱
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Schröder path

Schröder path - Path on non-negative quadrant

starting at (0,0)

ending at (2n,0)

with steps (1,1), (1,−1),

(2,0)

Assign weights:

step (1,1) (↗) from height (i − 1)→ i — 1

step (1,−1) (↘) from height i→ (i − 1) — αi

step (2,0) from height i→ i — δi

Theorem (Elvey Price - Sokal 2020)

Thron-Rogers polynomial Tn(α,δ) is the weighted sum over all Schröder
paths of semilength n.
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Schröder path - Path on non-negative quadrant

starting at (0,0)

ending at (2n,0)

with steps (1,1), (1,−1), (2,0)

Assign weights:

step (1,1) (↗) from height (i − 1)→ i — 1

step (1,−1) (↘) from height i→ (i − 1) — αi

step (2,0) from height i→ i — δi

Theorem (Elvey Price - Sokal 2020)

Thron-Rogers polynomial Tn(α,δ) is the weighted sum over all Schröder
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Bijection from D-permutations to labelled Schröder paths

We have a bijection from D-permutations to labelled Schröder paths with
step (2,0) only at height 0.

Two steps involved:

Describe surjection from D-permutations to Schröder paths with
level steps only at height 0 allowed.

Assign choice of labels
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level steps only at height 0 allowed.

Assign choice of labels

28 30



Bijection from D-permutations to labelled Schröder paths
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Description of Step 1

Let σ be a D-permutation on 2n letters.

If σ−1(i) is even, step i is ↗

If σ−1(i) is odd, step i is ↘
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Thank you

30 30


