# Continued fractions and combinatorial sequences: Factorial, Genocchi and median Genocchi numbers 

Bishal Deb (he/him)<br>University College London

# August 17, 2022 <br> Institute of Mathematical Sciences, Chennai 

Based on Ongoing Joint Work With
Alan D. Sokal

Let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \in$ some nice ring

Let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \in$ some nice ring Expand as a formal power series

Let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \in$ some nice ring
Expand as a formal power series


Let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \in$ some nice ring
Expand as a formal power series

$S_{n}(\boldsymbol{\alpha})$ are polynomials in variables $\boldsymbol{\alpha}$.

Let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \in$ some nice ring
Expand as a formal power series

$S_{n}(\boldsymbol{\alpha})$ are polynomials in variables $\boldsymbol{\alpha}$.

Consider a Dyck path, let's say

Consider a Dyck path, let's say


Consider a Dyck path, let's say


Assign weights:

- $\lambda$ from height $(i-1) \rightarrow i-\beta_{i}$
- $\searrow$ from height $i \rightarrow(i-1)-\alpha_{i}$

Consider a Dyck path, let's say


Assign weights:

- $\lambda$ from height $(i-1) \rightarrow i-\beta_{i}$
- $\searrow$ from height $i \rightarrow(i-1)-\alpha_{i}$

Consider a Dyck path, let's say


$$
\text { Weight }=\alpha_{1} \beta_{1} \alpha_{2} \beta_{2} \alpha_{3}^{2} \beta_{3}^{2} \alpha_{4}^{2} \beta_{4}^{2}
$$

Assign weights:

- $\lambda$ from height $(i-1) \rightarrow i-\beta_{i}$
- $\searrow$ from height $i \rightarrow(i-1)-\alpha_{i}$

$$
\underbrace{\frac{1}{1-\frac{\alpha_{1} \beta_{1} t}{1-\frac{\alpha_{2} \beta_{2} t}{1-\ddots}}}}_{\text {tieltjes continued fraction }}=\sum_{n=0}^{\infty} \underbrace{S_{n}(\boldsymbol{\alpha}, \boldsymbol{\beta})}_{\text {Stieltjes-Rogers polynomials }} t^{n}
$$

## Theorem (Flajolet 1980)

Stieltjes-Rogers polynomial $S_{n}(\boldsymbol{\alpha}, \boldsymbol{\beta})$ is the weighted sum over all Dyck paths of semilength $n$.

$$
\underbrace{\frac{1}{1-\frac{\alpha_{1} \beta_{1} t}{1-\frac{\alpha_{2} \beta_{2} t}{1-\ddots}}}}_{\text {tieltjes continued fraction }}=\sum_{n=0}^{\infty} \underbrace{S_{n}(\boldsymbol{\alpha}, \boldsymbol{\beta})}_{\text {Stieltjes-Rogers polynomials }} t^{n}
$$

## Theorem (Flajolet 1980)

Stieltjes-Rogers polynomial $S_{n}(\boldsymbol{\alpha}, \boldsymbol{\beta})$ is the weighted sum over all Dyck paths of semilength $n$.

Also, Jacobi-Rogers polynomials $\leftrightarrow$ Motzkin paths
$n=3$

$$
\begin{aligned}
& n=3 \\
& { }^{n}{ }^{\alpha_{1}} \alpha_{2}^{\alpha_{3}} \\
& \alpha_{1} \alpha_{2} \alpha_{3}
\end{aligned}
$$

$$
\begin{aligned}
& n=3 \\
& \boldsymbol{R}^{\alpha_{3}} \alpha_{2} \\
& \alpha_{1} \\
& \alpha_{1} \alpha_{2} \alpha_{3}
\end{aligned}
$$

$$
\begin{gathered}
n=3 \\
\boldsymbol{p}^{\alpha_{3}} \alpha_{2} \\
\alpha_{1} \alpha_{2} \alpha_{3}
\end{gathered}
$$

$n=3$

$\alpha_{1} \alpha_{2} \alpha_{3}$

$\alpha_{1}^{2} \alpha_{2}$

$\alpha_{1}^{2} \alpha_{2}$

$\alpha_{1} \alpha_{2}^{2}$
$n=3$


$\alpha_{1} \alpha_{2}^{2}$

$\alpha_{1}^{3}$
$n=3$

$\alpha_{1} \alpha_{2} \alpha_{3}$

$\alpha_{1}^{2} \alpha_{2}$

$\alpha_{1}^{2} \alpha_{2}$

$\alpha_{1} \alpha_{2}^{2}$

$\alpha_{1}^{3}$

Weighted sum:

$$
\alpha_{1} \alpha_{2} \alpha_{3}+2 \alpha_{1}^{2} \alpha_{2}+\alpha_{1} \alpha_{2}^{2}+\alpha_{1}^{3}=S_{3}(\boldsymbol{\alpha})
$$

## Some known S-fraction coefficients

- Catalan numbers (number of Dyck paths): $\alpha$ 's are $1,1,1,1, \ldots$


## Some known S-fraction coefficients

- Catalan numbers (number of Dyck paths): $\alpha$ 's are $1,1,1,1, \ldots$
- $n$ ! (number of permutations): $\alpha$ 's are $1,1,2,2,3,3, \ldots$


## Some known S-fraction coefficients

- Catalan numbers (number of Dyck paths): $\alpha$ 's are $1,1,1,1, \ldots$
- $n$ ! (number of permutations): $\alpha$ 's are $1,1,2,2,3,3, \ldots$
- Bell numbers (number of set partitions): $\alpha$ 's are $1,1,1,2,1,3,1,4 \ldots$


## Some known S-fraction coefficients

- Catalan numbers (number of Dyck paths): $\alpha$ 's are $1,1,1,1, \ldots$
- $n$ ! (number of permutations): $\alpha$ 's are $1,1,2,2,3,3, \ldots$
- Bell numbers (number of set partitions): $\alpha$ 's are $1,1,1,2,1,3,1,4 \ldots$
- ( $2 n-1$ )!! (number of involutions without fixed points): $\alpha$ 's are $1,2,3,4,5, \ldots$


## A continued fraction due to Euler (1760)

## Theorem

$$
1+1!t+2!t^{2}+3!t^{3}+4!t^{4}+\ldots=\frac{1}{1-\frac{1 \cdot t}{1-\frac{1 \cdot t}{1-\frac{2 \cdot t}{1-\frac{2 \cdot t}{1-\frac{3 \cdot t}{1-\frac{3 \cdot t}{1-\ddots}}}}}}}
$$

The sequence of $\alpha$ 's are $1,1,2,2,3,3, \ldots$.

## Several combinatorial proofs are known

- Françon-Viennot bijection 1979
- Foata-Zeilberger bijection 1990
- Biane bijection 1993


## Another continued fraction due to Euler (1760)

## Theorem

In fact,

$$
1+x t+x(x+1) t^{2}+x(x+1)(x+2) t^{3}+\ldots=\frac{1}{1-\frac{x \cdot t}{1-\frac{1 \cdot t}{1-\frac{(x+1) \cdot t}{1-\frac{2 \cdot t}{1-\frac{(x+2) \cdot t}{1-\frac{3 \cdot t}{1-\ddots}}}}}}}
$$

The sequence of $\alpha$ 's are $x, 1,(x+1), 2,(x+2), 3, \ldots$.

## Another continued fraction due to Euler (1760)

## Theorem

## In fact,

$$
1+x t+x(x+1) t^{2}+x(x+1)(x+2) t^{3}+\ldots=\frac{1}{1-\frac{x \cdot t}{1-\frac{1 \cdot t}{1-\frac{(x+1) \cdot t}{1-\frac{2 \cdot t}{1-\frac{(x+2) \cdot t}{1-\frac{3 \cdot t}{1-\ddots}}}}}}}
$$

The sequence of $\alpha$ 's are $x, 1,(x+1), 2,(x+2), 3, \ldots$.
Note that on the left hand side $x$ counts the number of cycles.

Define $P_{n}(x, y, u, v)$ such that

Define $P_{n}(x, y, u, v)$ such that

Define $P_{n}(x, y, u, v)$ such that

$$
\frac{1}{1-\frac{x \cdot t}{1-\frac{y \cdot t}{1-\frac{1}{2}}}}=\sum_{n=0}^{\infty} P_{n}(x, y, u, v) t^{n}
$$

Note that

$$
P_{n}(1,1,1,1)=n!=\sum_{\sigma \in \mathfrak{S}_{n}} 1
$$

Define $P_{n}(x, y, u, v)$ such that

$$
\frac{1}{1-\frac{x \cdot t}{y \cdot t}}=\sum_{n=0}^{\infty} P_{n}(x, y, u, v) t^{n}
$$

Note that

$$
P_{n}(1,1,1,1)=n!=\sum_{\sigma \in \mathfrak{S}_{n}} 1
$$

$$
P_{n}(x, 1,1,1)=x(x+1)(x+2) \cdots(x+n-1)=\sum_{\sigma \in \mathfrak{S}_{n}} x^{\# \operatorname{cycles} \text { in } \sigma}
$$

Define $P_{n}(x, y, u, v)$ such that

$$
\begin{aligned}
& \frac{1}{1-\frac{x \cdot t}{y \cdot t}}=\sum_{n=0}^{\infty} P_{n}(x, y, u, v) t^{n} \\
& 1-\frac{y \cdot t}{1-\frac{(x+u) \cdot t}{1-\frac{(y+v) \cdot t}{1-\frac{(x+2 u) \cdot t}{1-\frac{(y+2 v) \cdot t}{1-\ddots}}}}}
\end{aligned}
$$

Note that

$$
P_{n}(1,1,1,1)=n!=\sum_{\sigma \in \mathfrak{S}_{n}} 1
$$

$$
P_{n}(x, 1,1,1)=x(x+1)(x+2) \cdots(x+n-1)=\sum_{\sigma \in \mathfrak{S}_{n}} x^{\# \text { cycles in } \sigma}
$$

Question: What permutation statistics do $y, u, v$ count?

## Specialisations of $P_{n}(x, y, u, v)$

- Catalan numbers (number of Dyck paths): $\alpha$ 's are $1,1,1,1, \ldots$
- $n$ ! (number of permutations): $\alpha$ 's are $1,1,2,2,3,3, \ldots$
- Bell numbers (number of set partitions): $\alpha$ 's are $1,1,1,2,1,3,1,4 \ldots$
- ( $2 n-1$ )!! (number of involutions without fixed points): $\alpha$ 's are $1,2,3,4,5, \ldots$


## Theorem (Sokal-Zeng 2022)

(a)

$$
P_{n}(x, y, u, v)=\sum_{\sigma \in \mathfrak{S}_{n}} x^{\operatorname{arec}(\sigma)} y^{\operatorname{erec}(\sigma)} u^{n-\operatorname{exc}(\sigma)-\operatorname{arec}(\sigma)} v^{\operatorname{exc}(\sigma)-\operatorname{erec}(\sigma)}
$$

(b)

$$
P_{n}(x, y, u, v)=\sum_{\sigma \in \mathfrak{S}_{n}} x^{\operatorname{cyc}(\sigma)} y^{\operatorname{erec}(\sigma)} u^{n-\operatorname{exc}(\sigma)-\operatorname{cyc}(\sigma)} v^{\operatorname{exc}(\sigma)-\operatorname{erec}(\sigma)}
$$

## Theorem (Sokal-Zeng 2022)

(a)

$$
P_{n}(x, y, u, v)=\sum_{\sigma \in \mathfrak{S}_{n}} x^{\operatorname{arec}(\sigma)} y^{\operatorname{erec}(\sigma)} u^{n-\operatorname{exc}(\sigma)-\operatorname{arec}(\sigma)} v^{\operatorname{exc}(\sigma)-\operatorname{erec}(\sigma)}
$$

(b)

$$
P_{n}(x, y, u, v)=\sum_{\sigma \in \mathfrak{S}_{n}} x^{\operatorname{cyc}(\sigma)} y^{\operatorname{erec}(\sigma)} u^{n-\operatorname{exc}(\sigma)-\operatorname{cyc}(\sigma)} v^{\operatorname{exc}(\sigma)-\operatorname{erec}(\sigma)}
$$

- arec - antirecords or right-to-left minima
- rec - records or left-to-right maxima
- erec - exclusive records i.e. records that are not anti-records
- exc - excedances i.e. $(i, \sigma(i))$ such that $i<\sigma(i)$

In fact, special case of a much stronger theorem

In fact, special case of a much stronger theorem
Interpretations available for not just 4 variables

In fact, special case of a much stronger theorem
Interpretations available for not just 4 variables
But 5 families of infinitely many variables!!!

In fact, special case of a much stronger theorem
Interpretations available for not just 4 variables
But 5 families of infinitely many variables!!!
Similar results were also found by Blitvic-Steingrimsson (2021) at around the same time

In fact, special case of a much stronger theorem
Interpretations available for not just 4 variables
But 5 families of infinitely many variables!!!
Similar results were also found by Blitvic-Steingrimsson (2021) at around the same time

Randrianarivony in a little-known paper had actually interpreted almost all of the variables for different statistics in 1998!!!

## Question

We have a combinatorial interpretation for

i.e. $\alpha$ 's given by $1,1,2,2,3,3,4,4, \ldots$. We can also read off statistics from this by putting in variables.

## Question

We have a combinatorial interpretation for

i.e. $\alpha$ 's given by $1,1,2,2,3,3,4,4, \ldots$. We can also read off statistics from this by putting in variables.
Question: Combinatorially understand $\alpha^{\prime}$ s $1^{k}, 1^{k}, 2^{k}, 2^{k}, 3^{k}, 3^{k}, \ldots$ "multivariately"

- $k=1$ quasi-linear case: $n$ !


## Question

We have a combinatorial interpretation for

i.e. $\alpha$ 's given by $1,1,2,2,3,3,4,4, \ldots$. We can also read off statistics from this by putting in variables.
Question: Combinatorially understand $\alpha^{\prime}$ s $1^{k}, 1^{k}, 2^{k}, 2^{k}, 3^{k}, 3^{k}, \ldots$ "multivariately"

- $k=1$ quasi-linear case: $n$ !
- $k=2$ quasi-quadratic case: Median Genocchi numbers


## Question

We have a combinatorial interpretation for

i.e. $\alpha$ 's given by $1,1,2,2,3,3,4,4, \ldots$. We can also read off statistics from this by putting in variables.
Question: Combinatorially understand $\alpha^{\prime}$ s $1^{k}, 1^{k}, 2^{k}, 2^{k}, 3^{k}, 3^{k}, \ldots$
"multivariately"

- $k=1$ quasi-linear case: $n$ !
- $k=2$ quasi-quadratic case: Median Genocchi numbers
- $k=3$ quasi-cubic case: Not on OEIS!!!


## Linear $\alpha$

- Catalan numbers (number of Dyck paths): $\alpha$ 's are $1,1,1,1, \ldots$


## Linear $\alpha$

- Catalan numbers (number of Dyck paths): $\alpha$ 's are $1,1,1,1, \ldots$
- $n$ ! (number of permutations):
$\alpha$ 's are $1,1,2,2,3,3, \ldots$


## Linear $\alpha$

- Catalan numbers (number of Dyck paths): $\alpha$ 's are $1,1,1,1, \ldots$
- $n$ ! (number of permutations): $\alpha$ 's are $1,1,2,2,3,3, \ldots$
- Bell numbers (number of set partitions): $\alpha$ 's are $1,1,1,2,1,3,1,4 \ldots$
- Catalan numbers (number of Dyck paths): $\alpha$ 's are $1,1,1,1, \ldots$
- $n$ ! (number of permutations): $\alpha$ 's are $1,1,2,2,3,3, \ldots$
- Bell numbers (number of set partitions): $\alpha$ 's are $1,1,1,2,1,3,1,4 \ldots$
- ( $2 n-1$ )!! (number of involutions without fixed points): $\alpha$ 's are $1,2,3,4,5, \ldots$


## Some combinatorial sequences whose $\alpha$ grow quadratically

- Genocchi numbers A11050
- Median Genocchi numbers A00543
- Once shifted median Genocchi numbers A00036
- Tangent numbers A00018
- Secant numbers A00036
- Even Springer numbers A00028


## Genocchi numbers

The Genocchi numbers are given by

$$
t \tan \left(\frac{t}{2}\right)=\sum_{n=0}^{\infty} g_{n} \frac{t^{2 n+2}}{(2 n+2)!}
$$

## Genocchi numbers

The Genocchi numbers are given by

$$
t \tan \left(\frac{t}{2}\right)=\sum_{n=0}^{\infty} g_{n} \frac{t^{2 n+2}}{(2 n+2)!}
$$

The first few numbers are $1,1,3,17,155,2073, \ldots$.

## Combinatorial Interpretation

Genocchi numbers $g_{n}$ are counted by

$$
\#\left\{\sigma \in \mathfrak{S}_{2 n} \mid 2 i>\sigma(2 i) \text { and } 2 i-1 \leq \sigma(2 i-1)\right\}
$$

## Combinatorial Interpretation

Genocchi numbers $g_{n}$ are counted by

$$
\#\left\{\sigma \in \mathfrak{S}_{2 n} \mid 2 i>\sigma(2 i) \text { and } 2 i-1 \leq \sigma(2 i-1)\right\}
$$

Median Genocchi numbers $h_{n}$ are counted by

$$
\#\left\{\sigma \in \mathfrak{S}_{2 n} \mid 2 i>\sigma(2 i) \text { and } 2 i-1<\sigma(2 i-1)\right\}
$$

## Combinatorial Interpretation

Genocchi numbers $g_{n}$ are counted by

$$
\#\left\{\sigma \in \mathfrak{S}_{2 n} \mid 2 i>\sigma(2 i) \text { and } 2 i-1 \leq \sigma(2 i-1)\right\}
$$

Median Genocchi numbers $h_{n}$ are counted by

$$
\#\left\{\sigma \in \mathfrak{S}_{2 n} \mid 2 i>\sigma(2 i) \text { and } 2 i-1<\sigma(2 i-1)\right\}
$$

Also $h_{n+1}$ counted by

$$
\#\left\{\sigma \in \mathfrak{S}_{2 n} \mid 2 i \geq \sigma(2 i) \text { and } 2 i-1 \leq \sigma(2 i-1)\right\}
$$

## Combinatorial Interpretation

Genocchi numbers $g_{n}$ are counted by

$$
\#\left\{\sigma \in \mathfrak{S}_{2 n} \mid 2 i>\sigma(2 i) \text { and } 2 i-1 \leq \sigma(2 i-1)\right\}
$$

Median Genocchi numbers $h_{n}$ are counted by

$$
\#\left\{\sigma \in \mathfrak{S}_{2 n} \mid 2 i>\sigma(2 i) \text { and } 2 i-1<\sigma(2 i-1)\right\}
$$

Also $h_{n+1}$ counted by

$$
\#\left\{\sigma \in \mathfrak{S}_{2 n} \mid 2 i \geq \sigma(2 i) \text { and } 2 i-1 \leq \sigma(2 i-1)\right\}
$$

D-permutations or Dumont-like permutations (introduced by Lazar and Wachs 2019)

## Combinatorial Interpretation

Genocchi numbers $g_{n}$ are counted by

$$
\#\left\{\sigma \in \mathfrak{S}_{2 n} \mid 2 i>\sigma(2 i) \text { and } 2 i-1 \leq \sigma(2 i-1)\right\}
$$

D-e-semiderangement
Median Genocchi numbers $h_{n}$ are counted by

$$
\#\left\{\sigma \in \mathfrak{S}_{2 n} \mid 2 i>\sigma(2 i) \text { and } 2 i-1<\sigma(2 i-1)\right\}
$$

D-derangements
Also $h_{n+1}$ counted by

$$
\#\left\{\sigma \in \mathfrak{S}_{2 n} \mid 2 i \geq \sigma(2 i) \text { and } 2 i-1 \leq \sigma(2 i-1)\right\}
$$

D-permutations or Dumont-like permutations (introduced by Lazar and Wachs 2019)

Non-example


Example of a D-permutation

Example:-D-permutations

$$
2 i \geqslant \sigma(2 i) \quad 2 i-1 \leqslant \sigma(2 i-1)
$$



$$
\sigma=71346285
$$

## Continued fractions

The $g_{n}$ have an $S$-fraction with $\alpha$ 's
$1 \cdot 1,1 \cdot 2,2 \cdot 2,2 \cdot 3,3 \cdot 3,3 \cdot 4, \ldots$

## Continued fractions

The $g_{n}$ have an $S$-fraction with $\alpha$ 's

$$
1 \cdot 1,1 \cdot 2,2 \cdot 2,2 \cdot 3,3 \cdot 3,3 \cdot 4, \ldots
$$

The $h_{n}$ have an $S$-fraction with $\alpha$ 's

$$
1,1,4,4,9,9 \ldots
$$

## Continued fractions

The $g_{n}$ have an $S$-fraction with $\alpha$ 's

$$
1 \cdot 1,1 \cdot 2,2 \cdot 2,2 \cdot 3,3 \cdot 3,3 \cdot 4, \ldots
$$

The $h_{n}$ have an $S$-fraction with $\alpha$ 's

$$
1,1,4,4,9,9 \ldots
$$

and the $h_{n+1}$ have an $S$-fraction with $\alpha$ 's

$$
1 \cdot 2,1 \cdot 2,2 \cdot 3,2 \cdot 3,3 \cdot 4,3 \cdot 4, \ldots
$$

## Continued fractions

The $g_{n}$ have an $S$-fraction with $\alpha$ 's

$$
1 \cdot 1,1 \cdot 2,2 \cdot 2,2 \cdot 3,3 \cdot 3,3 \cdot 4, \ldots
$$

The $h_{n}$ have an $S$-fraction with $\alpha$ 's

$$
1,1,4,4,9,9 \ldots
$$

and the $h_{n+1}$ have an $S$-fraction with $\alpha$ 's

$$
1 \cdot 2,1 \cdot 2,2 \cdot 3,2 \cdot 3,3 \cdot 4,3 \cdot 4, \ldots
$$

Want a unifying continued fraction for all three sequences.

Classical S-fractions with integer $\alpha$ due to Viennot (1981)

Classical S-fractions with integer $\alpha$ due to Viennot (1981)

Pan-Zeng (2021) have a multivariate continued fraction in 8 variables with linear statistics for a different combinatorial interpretation (even-odd descent permutations).

## Main Theorem

We have a T-fraction (Thron-type continued fractions):
Constructed by using

- excedences ( $(i, \sigma(i))$ with $i<\sigma(i))$ with parities (e or o)
- anti-excedances with parities
- fixed points with parities
- records, anti-records
$P_{n}\left(x_{\mathrm{ee}}, x_{\mathrm{eo}}, u_{\mathrm{ee}}, u_{\mathrm{eo}}, y_{\mathrm{oo}}, y_{\mathrm{oe}}, v_{\mathrm{oo}}, v_{\mathrm{oe}}, z_{\mathrm{o}}, z_{\mathrm{e}}, w_{\mathrm{o}}, w_{\mathrm{e}}\right)=$

$$
\begin{aligned}
\sum_{\sigma \in \mathfrak{D}_{2 n}} & x_{\mathrm{ee}}^{\operatorname{earecaexcee}(\sigma)} x_{\mathrm{eo}}^{\operatorname{earecaexceo}(\sigma)} u_{\mathrm{ee}}^{\mathrm{nraexcee}(\sigma)} u_{\mathrm{eo}}^{\mathrm{nraexceo}(\sigma)} \times \\
& y_{\mathrm{oo}}^{\operatorname{erecexcoo}(\sigma)} y_{\mathrm{oe}}^{\operatorname{erecexcoe}(\sigma)} v_{\mathrm{oo}}^{\mathrm{nrexcoo}(\sigma)} v_{\mathrm{oe}}^{\mathrm{nrexcoe}(\sigma)} \times \\
& z_{\mathrm{o}}^{\operatorname{raro}(\sigma)} z_{\mathrm{e}}^{\operatorname{rare}(\sigma)} w_{\mathrm{o}}^{\operatorname{nrfixo}(\sigma)} w_{\mathrm{e}}^{\mathrm{nrfixe}(\sigma)}
\end{aligned}
$$

$P_{n}\left(x_{\mathrm{ee}}, x_{\mathrm{eo}}, u_{\mathrm{ee}}, u_{\mathrm{eo}}, y_{\mathrm{oo}}, y_{\mathrm{oe}}, v_{\mathrm{oo}}, v_{\mathrm{oe}}, z_{\mathrm{o}}, z_{\mathrm{e}}, w_{\mathrm{o}}, w_{\mathrm{e}}\right)=$

$$
\begin{aligned}
\sum_{\sigma \in \mathfrak{D}_{2 n}} & x_{\mathrm{ee}}^{\text {earecaexcee }(\sigma)} x_{\mathrm{eo}}^{\operatorname{earecaexceo}(\sigma)} u_{\mathrm{ee}}^{\text {nraexcee }(\sigma)} u_{\mathrm{eo}}^{\text {nraexceo }(\sigma)} \times \\
& y_{\mathrm{oo}}^{\operatorname{erecexcoo}(\sigma)} y_{\mathrm{oe}}^{\operatorname{erecexcoe}(\sigma)} v_{\mathrm{oo}}^{\operatorname{nrexcoo}(\sigma)} v_{\mathrm{oe}}^{\operatorname{nrexcoe}(\sigma)} \times \\
& z_{\mathrm{o}}^{\operatorname{raro}(\sigma)} z_{\mathrm{e}}^{\operatorname{rare}(\sigma)} w_{\mathrm{o}}^{\operatorname{nrfixo}(\sigma)} w_{\mathrm{e}}^{\mathrm{nrfixe}(\sigma)}
\end{aligned}
$$

$$
\frac{1}{1-\delta_{0} t-\frac{\alpha_{1} t}{1-\frac{\alpha_{2} t}{1-\frac{\alpha_{3} t}{1-\frac{\alpha_{4} t}{1-\frac{\alpha_{5} t}{\ddots}}}}}}
$$

where

$$
\begin{gathered}
\delta_{1}=z_{\mathrm{e}} z_{\mathrm{o}} \\
\alpha_{2 k-1}=\left[x_{\mathrm{eo}}+(k-1) u_{\mathrm{eo}}\right] \cdot\left[y_{\mathrm{oe}}+(k-1) v_{\mathrm{oe}}\right] \\
\alpha_{2 k}=\left[x_{\mathrm{ee}}+(k-1) u_{\mathrm{ee}}+w_{\mathrm{e}}\right] \cdot\left[y_{\mathrm{oo}}+(k-1) v_{\mathrm{oo}}+w_{\mathrm{o}}\right] .
\end{gathered}
$$

## General form of a T-fraction

1
$1-\delta_{0} t-\frac{\alpha_{1} t}{1-\delta_{1} t-\frac{\alpha_{2} t}{1-\delta_{2} t-\frac{\alpha_{3} t}{1-\delta_{3} t-\frac{\alpha_{4} t}{1-\delta_{4} t-\frac{\alpha_{5} t}{\ddots}}}}}$

## General form of a T-fraction

1
$1-\delta_{0} t-\frac{\alpha_{1} t}{1-\delta_{1} t-\frac{\alpha_{2} t}{1-\delta_{2} t-\frac{\alpha_{3} t}{1-\delta_{3} t-\frac{\alpha_{4} t}{1-\delta_{4} t-\frac{\alpha_{5} t}{\ddots}}}}}$

## Schröder path

Schröder path - Path on non-negative quadrant

- starting at $(0,0)$
- ending at $(2 n, 0)$
- with steps $(1,1),(1,-1)$,


## Schröder path

Schröder path - Path on non-negative quadrant

- starting at $(0,0)$
- ending at $(2 n, 0)$
- with steps $(1,1),(1,-1),(2,0)$


## Schröder path

Schröder path - Path on non-negative quadrant

- starting at $(0,0)$
- ending at $(2 n, 0)$
- with steps $(1,1),(1,-1),(2,0)$

Assign weights:

- step $(1,1)(\nearrow)$ from height $(i-1) \rightarrow i-1$
- step $(1,-1)(\searrow)$ from height $i \rightarrow(i-1)-\alpha_{i}$
- step $(2,0)$ from height $i \rightarrow i-\delta_{i}$


## Schröder path

Schröder path - Path on non-negative quadrant

- starting at $(0,0)$
- ending at $(2 n, 0)$
- with steps $(1,1),(1,-1),(2,0)$

Assign weights:

- step $(1,1)(\nearrow)$ from height $(i-1) \rightarrow i-1$
- step $(1,-1)(\searrow)$ from height $i \rightarrow(i-1)-\alpha_{i}$
- step $(2,0)$ from height $i \rightarrow i-\delta_{i}$


## Theorem (Elvey Price - Sokal 2020)

Thron-Rogers polynomial $T_{n}(\boldsymbol{\alpha}, \boldsymbol{\delta})$ is the weighted sum over all Schröder paths of semilength $n$.

## Bijection from D-permutations to labelled Schröder paths

We have a bijection from D-permutations to labelled Schröder paths with step $(2,0)$ only at height 0 .

## Bijection from D-permutations to labelled Schröder paths

We have a bijection from D-permutations to labelled Schröder paths with step $(2,0)$ only at height 0 .
Two steps involved:

## Bijection from D-permutations to labelled Schröder paths

We have a bijection from D-permutations to labelled Schröder paths with step $(2,0)$ only at height 0 .
Two steps involved:

- Describe surjection from D-permutations to Schröder paths with level steps only at height 0 allowed.


## Bijection from D-permutations to labelled Schröder paths

We have a bijection from D-permutations to labelled Schröder paths with step $(2,0)$ only at height 0 .
Two steps involved:

- Describe surjection from D-permutations to Schröder paths with level steps only at height 0 allowed.
- Assign choice of labels


## Description of Step 1

Let $\sigma$ be a D-permutation on $2 n$ letters.

- If $\sigma^{-1}(i)$ is even, step $i$ is $\lambda$
- If $\sigma^{-1}(i)$ is odd, step $i$ is $\searrow$

Thank you

