Combinatorics and Total Positivity

Bishal Deb
University College London
August 23, 2022
Chennai Mathematical Institute

Source: Math with Bad Drawings
(1) Introduction
(2) Proof techniques and some special types of matrices

- LGV lemma
(2) Hankel matrices
- Toeplitz matrices
- Lower triangular matrices
(0) The Eulerian triangle

Structure

(1) Introduction
(2) Proof techniques and some special types of matrices

- LGV lemma
© Hankel matrices
- Toeplitz matrices
- Lower triangular matrices
- The Eulerian triangle

Introduction

Definition (Total Positivity (TP))

A matrix of real numbers said to be totally positive (TP) if all its minors are non-negative

Introduction

Definition (Total Positivity (TP))

A matrix of real numbers said to be totally positive (TP) if all its minors are non-negative i.e., determinants of all finite square submatrices are non-negative.

Introduction

Definition (Total Positivity (TP))

A matrix of real numbers said to be totally positive (TP) if all its minors are non-negative i.e., determinants of all finite square submatrices are non-negative.

Array of numbers and not linear operator.

Introduction

Definition (Total Positivity (TP))

A matrix of real numbers said to be totally positive (TP) if all its minors are non-negative i.e., determinants of all finite square submatrices are non-negative.

Array of numbers and not linear operator.
Need not be a square matrix,

Introduction

Definition (Total Positivity (TP))

A matrix of real numbers said to be totally positive (TP) if all its minors are non-negative i.e., determinants of all finite square submatrices are non-negative.

Array of numbers and not linear operator.
Need not be a square matrix, or finite!

Introduction

Definition (Total Positivity (TP))

A matrix of real numbers said to be totally positive (TP) if all its minors are non-negative i.e., determinants of all finite square submatrices are non-negative.

Array of numbers and not linear operator.
Need not be a square matrix, or finite!
Will consider a matrix of polynomials soon!

Historical Note

First defined independently by two different groups in the 30s

(a) M.G. Krein (1907-1989)

(b) I.J. Schoenberg (1903-1990)

Source: MacTutor History of Mathematics Archive
We use Schoenberg's terminology.

Example

Example

- Example: Bidiagonal matrices with entries ≥ 0

$$
\left[\begin{array}{ccccccc}
0 & a_{1} & b_{1} & 0 & 0 & 0 & 0 \\
0 & 0 & a_{2} & b_{2} & 0 & 0 & 0 \\
0 & 0 & 0 & a_{3} & b_{3} & 0 & 0 \\
0 & 0 & 0 & 0 & a_{4} & b_{4} & 0 \\
0 & 0 & 0 & 0 & 0 & a_{5} & b_{5} \\
0 & 0 & 0 & 0 & 0 & 0 & a_{6}
\end{array}\right]
$$

Some Operations which Preserve TP

- Taking submatrices,

Some Operations which Preserve TP

- Taking submatrices, adding rows or columns of zeros,

Some Operations which Preserve TP

- Taking submatrices, adding rows or columns of zeros, inserting copies of row or columns next to them.

Some Operations which Preserve TP

- Taking submatrices, adding rows or columns of zeros, inserting copies of row or columns next to them.
- Block matrices of the form

$$
\left[\begin{array}{c|c}
A & 0 \\
\hline 0 & B
\end{array}\right]
$$

where both A and B are TP.

Some Operations which Preserve TP

- Taking submatrices, adding rows or columns of zeros, inserting copies of row or columns next to them.
- Block matrices of the form

$$
\left[\begin{array}{c|c}
A & 0 \\
\hline 0 & B
\end{array}\right]
$$

where both A and B are TP.

- Matrix Products preserve TP.

Proof: Use Cauchy-Binet formula which we recall here:

Theorem (Cauchy-Binet formula)

Let A be an $m \times n$ matrix and B an $n \times m$ matrix. Then we have that

$$
\operatorname{det}(A B)=\sum_{S \in\binom{[n n)}{m}} \operatorname{det}\left(A_{[m], S}\right) \operatorname{det}\left(B_{S,[m]}\right)
$$

where [n] denotes the set $\{1, \ldots, n\}$, and given a set $T,\binom{T}{k}$ is the collection of all k-dimensional subsets of T.

Matrix Addition does not preserve TP

$$
\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]+\left[\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right]
$$

where

$$
\operatorname{det}\left(\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]\right)=-1
$$

Are there any more?

No!!!

Are there any more?

No!!!

All finite TP matrices with real entries are products of bidiagonal matrices (Whitney 1952), (Loewner 1955), (Cryer 1972), (Gasca Peña 1990). Fallat (2001) mentions historical remarks about this.

Are there any more?

No!!!

All finite TP matrices with real entries are products of bidiagonal matrices (Whitney 1952), (Loewner 1955), (Cryer 1972), (Gasca Peña 1990). Fallat (2001) mentions historical remarks about this.

Infact, this result is algorithmic and we get an efficient algorithm for bidiagonal factorisation of a TP matrix called Neville elimination!!

Are there any more?

No!!!

All finite TP matrices with real entries are products of bidiagonal matrices (Whitney 1952), (Loewner 1955), (Cryer 1972), (Gasca Peña 1990). Fallat (2001) mentions historical remarks about this.

Infact, this result is algorithmic and we get an efficient algorithm for bidiagonal factorisation of a TP matrix called Neville elimination!!

Removes the necessity of checking non-negativity of all minors.

Coefficientwise TP

Definition (Coefficientwise TP)

A matrix of polynomials with real coefficients is said to be coefficientwise totally positive (coefficientwise TP) if all its minors have non-negative coefficients.

Coefficientwise TP

Definition (Coefficientwise TP)

A matrix of polynomials with real coefficients is said to be coefficientwise totally positive (coefficientwise TP) if all its minors have non-negative coefficients.

One or several variables.

Coefficientwise TP

Definition (Coefficientwise TP)

A matrix of polynomials with real coefficients is said to be coefficientwise totally positive (coefficientwise TP) if all its minors have non-negative coefficients.

One or several variables.
Coefficientwise TP \Longrightarrow Pointwise TP.

Coefficientwise TP

Definition (Coefficientwise TP)

A matrix of polynomials with real coefficients is said to be coefficientwise totally positive (coefficientwise TP) if all its minors have non-negative coefficients.

One or several variables.
Coefficientwise TP \Longrightarrow Pointwise TP.
But much stronger.

(1) Introduction

(2) Proof techniques and some special types of matrices
© LGV lemma
(3) Hankel matrices
(3 Toeplitz matrices

- Lower triangular matrices
- The Eulerian triangle

The essence of mathematics is proving theorems - and so, that is what mathematicians do: They prove theorems. But to tell the truth, what they really want to prove, once in their lifetime, is a Lemma, like the one by Fatou in analysis, the Lemma of Gauss in number theory, or the Burnside-Frobenius Lemma in combinatorics.

- Chapter 25, Lattice Paths and Determinants Proofs from the Book

LGV lemma on planar digraphs

- Let G be a directed acyclic graph embedded in the disc such that

LGV lemma on planar digraphs

- Let G be a directed acyclic graph embedded in the disc such that
- Edges directed left to right
- Edges have non-negative weights

LGV lemma on planar digraphs

- Let G be a directed acyclic graph embedded in the disc such that
- Edges directed left to right
- Edges have non-negative weights
- Sources $\left(u_{n}\right)$ and sinks $\left(v_{n}\right)$ on boundary

LGV lemma on planar digraphs

- Let G be a directed acyclic graph embedded in the disc such that
- Edges directed left to right
- Edges have non-negative weights
- Sources $\left(u_{n}\right)$ and sinks $\left(v_{n}\right)$ on boundary
- Sources - clockwise direction

LGV lemma on planar digraphs

- Let G be a directed acyclic graph embedded in the disc such that
- Edges directed left to right
- Edges have non-negative weights
- Sources $\left(u_{n}\right)$ and sinks $\left(v_{n}\right)$ on boundary
- Sources - clockwise direction
- Sinks - anticlockwise direction.

LGV lemma on planar digraphs

- Let G be a directed acyclic graph embedded in the disc such that
- Edges directed left to right
- Edges have non-negative weights
- Sources $\left(u_{n}\right)$ and sinks $\left(v_{n}\right)$ on boundary
- Sources - clockwise direction
- Sinks - anticlockwise direction.

Example. Edges weighted 1.

LGV lemma on planar digraphs

- Let G be a directed acyclic graph embedded in the disc such that
- Edges directed left to right
- Edges have non-negative weights
- Sources (u_{n}) and sinks (v_{n}) on boundary
- Sources - clockwise direction
- Sinks - anticlockwise direction.
- Weight of a path - product of edges

LGV lemma on planar digraphs

- Let G be a directed acyclic graph embedded in the disc such that
- Edges directed left to right
- Edges have non-negative weights
- Sources (u_{n}) and sinks (v_{n}) on boundary
- Sources - clockwise direction
- Sinks - anticlockwise direction.
- Weight of a path - product of edges
- Path matrix

LGV lemma on planar digraphs

- Let G be a directed acyclic graph embedded in the disc such that
- Edges directed left to right
- Edges have non-negative weights
- Sources (u_{n}) and sinks (v_{n}) on boundary
- Sources - clockwise direction
- Sinks - anticlockwise direction.
- Weight of a path - product of edges
- Path matrix
- Entry (n, k) - sum of paths from u_{n} to v_{k}

Path matrix
$\left[\begin{array}{cccccc}1 & & & & & \\ 1 & 1 & & & & \\ 1 & 2 & 1 & & & \\ 1 & 3 & 3 & 1 & & \\ 1 & 4 & 6 & 4 & 1 & \\ 1 & 5 & 10 & 10 & 5 & 1\end{array}\right]$

Path matrix
$\left[\begin{array}{cccccc}1 & & & & & \\ 1 & 1 & & & & \\ 1 & 2 & 1 & & & \\ 1 & 3 & 3 & 1 & & \\ 1 & 4 & 6 & 4 & 1 & \\ 1 & 5 & 10 & 10 & 5 & 1\end{array}\right]$

Binomial triangle!

LGV lemma on planar digraphs

- Let G be a directed acyclic graph embedded in the disc such that
- Edges directed left to right
- Edges have non-negative weights
- Sources (u_{n}) and sinks (v_{n}) on boundary
- Sources - clockwise direction
- Sinks - anticlockwise direction.
- Weight of a path - product of edges
- Path matrix
- Entry (n, k) - sum of paths from u_{n} to v_{k}

LGV lemma on planar digraphs

- Let G be a directed acyclic graph embedded in the disc such that
- Edges directed left to right
- Edges have non-negative weights
- Sources (u_{n}) and sinks (v_{n}) on boundary
- Sources - clockwise direction
- Sinks - anticlockwise direction.
- Weight of a path - product of edges
- Path matrix
- Entry (n, k) - sum of paths from u_{n} to v_{k}
- LGV lemma says that the path matrix is totally positive

Example: Lower Bidiagonal matrix

$$
\left[\begin{array}{ccccc}
d_{1} & 0 & 0 & 0 & 0 \\
r_{1} & d_{2} & 0 & 0 & 0 \\
0 & r_{2} & d_{3} & 0 & 0 \\
0 & 0 & r_{3} & d_{4} & 0 \\
0 & 0 & 0 & r_{4} & d_{5}
\end{array}\right]
$$

Example: Upper Bidiagonal matrix

$$
\left[\begin{array}{cccccc}
d_{1} & r_{1} & 0 & 0 & 0 & 0 \\
0 & d_{2} & r_{2} & 0 & 0 & 0 \\
0 & 0 & d_{3} & r_{3} & 0 & 0 \\
0 & 0 & 0 & d_{4} & r_{4} & 0 \\
0 & 0 & 0 & 0 & d_{5} & r_{5} \\
0 & 0 & 0 & 0 & 0 & d_{6}
\end{array}\right]
$$

Bidiagonal Matrix

Neville elimination gives us that a real matrix is TP if and only if it has an LGV digraph!

Bidiagonal Matrix

Neville elimination gives us that a real matrix is TP if and only if it has an LGV digraph!

In general, Existence of an LGV digraph \Longrightarrow TP.

Bidiagonal Matrix

Neville elimination gives us that a real matrix is TP if and only if it has an LGV digraph!

In general, Existence of an LGV digraph \Longrightarrow TP.
Converse not true in general.

Bidiagonal Matrix

Neville elimination gives us that a real matrix is TP if and only if it has an LGV digraph!

In general, Existence of an LGV digraph \Longrightarrow TP.
Converse not true in general. Not even true for integers as Neville factorisation involves division.

(1) Introduction

(2) Proof techniques and some special types of matrices
© LGV lemma
(2) Hankel matrices

- Toeplitz matrices
- Lower triangular matrices

© The Eulerian triangle

Hankel Matrix

Given a sequence a_{0}, a_{1}, \ldots the infinite matrix $H_{\infty}(\mathbf{a})$ whose $i j^{\text {th }}$ entry is a_{i+j} is called the Hankel matrix of $\left(a_{n}\right)_{n \geq 0}$.

a_{0}	a_{1}	a_{2}	a_{3}	a_{4}	\ldots
a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	\ldots
a_{2}	a_{3}	a_{4}	a_{5}	a_{6}	\ldots
a_{3}	a_{4}	a_{5}	a_{6}	a_{7}	\ldots
a_{4}	a_{5}	a_{6}	a_{7}	a_{8}	\ldots
\vdots	\vdots	\vdots	\vdots	\vdots	

Hankel Matrix

Given a sequence a_{0}, a_{1}, \ldots the infinite matrix $H_{\infty}(\mathbf{a})$ whose $i j^{\text {th }}$ entry is a_{i+j} is called the Hankel matrix of $\left(a_{n}\right)_{n \geq 0}$.

a_{0}	a_{1}	a_{2}	a_{3}	a_{4}	\ldots
a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	\ldots
a_{2}	a_{3}	a_{4}	a_{5}	a_{6}	\ldots
a_{3}	a_{4}	a_{5}	a_{6}	a_{7}	\ldots
a_{4}	a_{5}	a_{6}	a_{7}	a_{8}	\ldots
\vdots	\vdots	\vdots	\vdots	\vdots	

We say that a sequence $\left(a_{n}\right)_{n \geq 0}$ is Hankel-totally positive (Hankel-TP in short) if its Hankel matrix is TP.

Theorem (Stieltjes(1894), Gantmacher-Krein(1937))
For a sequence $\left(a_{n}\right)_{n \geq 0}$ of real numbers. TFAE:

Theorem (Stieltjes(1894), Gantmacher-Krein(1937))
For a sequence $\left(a_{n}\right)_{n \geq 0}$ of real numbers. TFAE:
(1) $\left(a_{n}\right)_{n \geq 0}$ is Hankel-TP.

Fundamental Fact about Hankel-TP

Theorem (Stieltjes(1894), Gantmacher-Krein(1937))

For a sequence $\left(a_{n}\right)_{n \geq 0}$ of real numbers. TFAE:
(1) $\left(a_{n}\right)_{n \geq 0}$ is Hankel-TP.
(2) There exists a positive measure μ on $[0, \infty)$ such that

$$
a_{n}=\int_{0}^{\infty} x^{n} d \mu(x)
$$

for all $n \geq 0$.

Fundamental Fact about Hankel-TP

Theorem (Stieltjes(1894), Gantmacher-Krein(1937))

For a sequence $\left(a_{n}\right)_{n \geq 0}$ of real numbers. TFAE:
(1) $\left(a_{n}\right)_{n \geq 0}$ is Hankel-TP.
(2) There exists a positive measure μ on $[0, \infty)$ such that

$$
a_{n}=\int_{0}^{\infty} x^{n} d \mu(x)
$$

for all $n \geq 0$.
(3) There exists numbers $\alpha_{0}, \alpha_{1}, \ldots \geq 0$ such that

$$
\sum_{n=0}^{\infty} a_{n} t^{n}=\frac{\alpha_{0}}{1-\frac{\alpha_{1} t}{1-\frac{\alpha_{2} t}{1-\ddots}}} .
$$

Fundamental Fact about Hankel-TP

Theorem (Stieltjes(1894), Gantmacher-Krein(1937))

For a sequence $\left(a_{n}\right)_{n \geq 0}$ of real numbers. TFAE:
(1) $\left(a_{n}\right)_{n \geq 0}$ is Hankel-TP.
(2) There exists a positive measure μ on $[0, \infty)$ such that

$$
a_{n}=\int_{0}^{\infty} x^{n} d \mu(x)
$$

for all $n \geq 0$.
(3) There exists numbers $\alpha_{0}, \alpha_{1}, \ldots \geq 0$ such that

$$
\sum_{n=0}^{\infty} a_{n} t^{n}=\frac{\alpha_{0}}{1-\frac{\alpha_{1} t}{1-\frac{\alpha_{2} t}{1-\ddots}}} .
$$

For coefficientwise Hankel-TP, $(3) \Longrightarrow(1)$.

Let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \in$ some nice ring

Let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \in$ some nice ring
Expand as a formal power series

Let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \in$ some nice ring
Expand as a formal power series

Let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \in$ some nice ring
Expand as a formal power series

$S_{n}(\boldsymbol{\alpha})$ are polynomials in variables $\boldsymbol{\alpha}$.

Let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \in$ some nice ring
Expand as a formal power series

$S_{n}(\boldsymbol{\alpha})$ are polynomials in variables $\boldsymbol{\alpha}$.

Consider a Dyck path, let's say

Consider a Dyck path, let's say

Consider a Dyck path, let's say

Assign weights:

- λ from height $(i-1) \rightarrow i-\beta_{i}$
- \searrow from height $i \rightarrow(i-1)-\alpha_{i}$

Consider a Dyck path, let's say

Assign weights:

- λ from height $(i-1) \rightarrow i-\beta_{i}$
- \searrow from height $i \rightarrow(i-1)-\alpha_{i}$

Consider a Dyck path, let's say

$$
\text { Weight }=\alpha_{1} \beta_{1} \alpha_{2} \beta_{2} \alpha_{3}^{2} \beta_{3}^{2} \alpha_{4}^{2} \beta_{4}^{2}
$$

Assign weights:

- λ from height $(i-1) \rightarrow i-\beta_{i}$
- \downarrow from height $i \rightarrow(i-1)-\alpha_{i}$

Theorem (Flajolet 1980)

Stieltjes-Rogers polynomial $S_{n}(\boldsymbol{\alpha}, \boldsymbol{\beta})$ is the weighted sum over all Dyck paths of semilength n.
$n=3$

$n=3$

$\alpha_{1} \alpha_{2} \alpha_{3}$

$$
\begin{gathered}
n=3 \\
\boldsymbol{p}^{\alpha_{3}} \alpha_{2} \\
\alpha_{1} \\
\alpha_{1} \alpha_{2} \alpha_{3}
\end{gathered}
$$

$$
\begin{aligned}
& n=3
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{1}^{2} \alpha_{2} \\
& \alpha_{1}^{2} \alpha_{2} \\
& \alpha_{1} \alpha_{2}^{2} \\
& \alpha_{1}^{3}
\end{aligned}
$$

Weighted sum:

$$
\alpha_{1} \alpha_{2} \alpha_{3}+2 \alpha_{1}^{2} \alpha_{2}+\alpha_{1} \alpha_{2}^{2}+\alpha_{1}^{3}=S_{3}(\boldsymbol{\alpha})
$$

Existence of an S-fraction is only a sufficient condition in the coefficientwise case.

Existence of an S-fraction is only a sufficient condition in the coefficientwise case.

Sokal and his collaborators have developed several other continued fractions and associated path models which are other sufficient conditions for proving Hankel-TP.

Structure

(1) Introduction

(2) Proof techniques and some special types of matrices
© LGV lemma
(2) Hankel matrices
(3) Toeplitz matrices

- Lower triangular matrices
- The Eulerian triangle

Given a sequence a_{0}, a_{1}, \ldots the infinite matrix $T_{\infty}(\mathbf{a})$ whose $i j^{\text {th }}$ entry is a_{i-j} for $i \leq j$ and 0 otherwise is called the Toeplitz matrix of $\left(a_{n}\right)_{n \geq 0}$.

a_{0}	0	0	0	0	\ldots
a_{1}	a_{0}	0	0	0	\ldots
a_{2}	a_{1}	a_{0}	0	0	\ldots
a_{3}	a_{2}	a_{1}	a_{0}	0	\ldots
a_{4}	a_{3}	a_{2}	a_{1}	a_{0}	\ldots
\vdots	\vdots	\vdots	\vdots	\vdots	

Given a sequence a_{0}, a_{1}, \ldots the infinite matrix $T_{\infty}(\mathbf{a})$ whose $i j^{\text {th }}$ entry is a_{i-j} for $i \leq j$ and 0 otherwise is called the Toeplitz matrix of $\left(a_{n}\right)_{n \geq 0}$.

a_{0}	0	0	0	0	\ldots
a_{1}	a_{0}	0	0	0	\ldots
a_{2}	a_{1}	a_{0}	0	0	\ldots
a_{3}	a_{2}	a_{1}	a_{0}	0	\ldots
a_{4}	a_{3}	a_{2}	a_{1}	a_{0}	\ldots
\vdots	\vdots	\vdots	\vdots	\vdots	

We say that a sequence $\left(a_{n}\right)_{n \geq 0}$ is Toeplitz-totally positive (Toeplitz-TP in short). Also often called a Polya frequency sequence (PF sequence).

Fundamental Fact about Toeplitz-TP

Theorem (Aissen-Schoenberg-Whitney, Edrei 1952)

For a sequence $\left(a_{n}\right)_{n \geq 0}$ of real numbers with $a_{0}=1$, TFAE:
(1) $\left(a_{n}\right)_{n \geq 0}$ is Toeplitz-TP.

Fundamental Fact about Toeplitz-TP

Theorem (Aissen-Schoenberg-Whitney, Edrei 1952)

For a sequence $\left(a_{n}\right)_{n \geq 0}$ of real numbers with $a_{0}=1$, TFAE:
(1) $\left(a_{n}\right)_{n \geq 0}$ is Toeplitz-TP.
(2) There exists $\alpha_{i} \geq 0, \beta_{j} \geq 0$ and $\gamma \geq 0$ such that

$$
\sum_{n=0}^{\infty} a_{n} t^{n}=e^{\gamma t} \frac{\Pi_{i}\left(1+\alpha_{i} t\right)}{\prod_{j}\left(1-\beta_{j} t\right)} .
$$

Fundamental Fact about Toeplitz-TP

Theorem (Aissen-Schoenberg-Whitney, Edrei 1952)

For a sequence $\left(a_{n}\right)_{n \geq 0}$ of real numbers with $a_{0}=1$, TFAE:
(1) $\left(a_{n}\right)_{n \geq 0}$ is Toeplitz-TP.
(2) There exists $\alpha_{i} \geq 0, \beta_{j} \geq 0$ and $\gamma \geq 0$ such that

$$
\sum_{n=0}^{\infty} a_{n} t^{n}=e^{\gamma t} \frac{\Pi_{i}\left(1+\alpha_{i} t\right)}{\prod_{j}\left(1-\beta_{j} t\right)} .
$$

$(2) \Longrightarrow(1)$ is easy and even holds coefficientwise.

Fundamental Fact about Toeplitz-TP

Theorem (Aissen-Schoenberg-Whitney, Edrei 1952)

For a sequence $\left(a_{n}\right)_{n \geq 0}$ of real numbers with $a_{0}=1$, TFAE:
(1) $\left(a_{n}\right)_{n \geq 0}$ is Toeplitz-TP.
(2) There exists $\alpha_{i} \geq 0, \beta_{j} \geq 0$ and $\gamma \geq 0$ such that

$$
\sum_{n=0}^{\infty} a_{n} t^{n}=e^{\gamma t} \frac{\Pi_{i}\left(1+\alpha_{i} t\right)}{\prod_{j}\left(1-\beta_{j} t\right)} .
$$

$(2) \Longrightarrow(1)$ is easy and even holds coefficientwise. $(1) \Longrightarrow(2)$ is hard and requires Nevanlinna theory.

Fundamental Fact about Toeplitz-TP

Theorem (Aissen-Schoenberg-Whitney, Edrei 1952)

For a sequence $\left(a_{n}\right)_{n \geq 0}$ of real numbers with $a_{0}=1$, TFAE:
(1) $\left(a_{n}\right)_{n \geq 0}$ is Toeplitz-TP.
(2) There exists $\alpha_{i} \geq 0, \beta_{j} \geq 0$ and $\gamma \geq 0$ such that

$$
\sum_{n=0}^{\infty} a_{n} t^{n}=e^{\gamma t} \frac{\Pi_{i}\left(1+\alpha_{i} t\right)}{\prod_{j}\left(1-\beta_{j} t\right)} .
$$

$(2) \Longrightarrow(1)$ is easy and even holds coefficientwise. $(1) \Longrightarrow(2)$ is hard and requires Nevanlinna theory.
For a finite sequence we need to show that the generating polynomial is negative real rooted.

Theorem (Katkova 2006)
Let $\xi(z)=\frac{1}{2} z(z-1) \pi^{-z / 2} \Gamma(z / 2) \zeta(z)$ be the Reimann- ξ function and let $\xi_{1}(z)=\xi(\sqrt{z}+1 / 2)$.

Equivalent statement of Riemann Hypothesis

Theorem (Katkova 2006)
Let $\xi(z)=\frac{1}{2} z(z-1) \pi^{-z / 2} \Gamma(z / 2) \zeta(z)$ be the Reimann- ξ function and let $\xi_{1}(z)=\xi(\sqrt{z}+1 / 2)$. Then ξ_{1} is Toeplitz-TP if and only if the Reimann Hypothesis is true.

Log Concavity and Log Convexity

Consider the sequence $\left(a_{n}\right)_{n \geq 0}$.

Log Concavity and Log Convexity

Consider the sequence $\left(a_{n}\right)_{n \geq 0}$.
Toeplitz-TP P_{2} implies log-concavity i.e., $a_{n}^{2}-a_{n-1} a_{n+1} \geq 0$.
Hankel- TP_{2} implies log-convexity i.e., $a_{n}^{2}-a_{n-1} a_{n+1} \leq 0$.

Structure

(1) Introduction

(2) Proof techniques and some special types of matrices
© LGV lemma
(2) Hankel matrices

- Toeplitz matrices
© Lower triangular matrices

© The Eulerian triangle

Lower Triangular Matrices and three types of TP

Consider an infinite lower triangular matrix A with entries $a_{i j}$ where the indexing of the rows and columns begins from 0 .

a_{00}	0	0	0	0	\ldots
a_{10}	a_{11}	0	0	0	\ldots
a_{20}	a_{21}	a_{22}	0	0	\ldots
a_{30}	a_{31}	a_{32}	a_{33}	0	\ldots
a_{40}	a_{41}	a_{42}	a_{43}	a_{44}	\ldots
\vdots	\vdots	\vdots	\vdots	\vdots	

Lower Triangular Matrices and three types of TP

Let $A_{n}(x)$ denote the row generating polynomial of the $n^{\text {th }}$ row i.e.

$$
A_{n}(x)=\sum_{i=0}^{n} a_{n i} x^{i}
$$

Lower Triangular Matrices and three types of TP

Let $A_{n}(x)$ denote the row generating polynomial of the $n^{\text {th }}$ row i.e.

$$
A_{n}(x)=\sum_{i=0}^{n} a_{n i} x^{i}
$$

We can ask three different questions:

Lower Triangular Matrices and three types of TP

Let $A_{n}(x)$ denote the row generating polynomial of the $n^{\text {th }}$ row i.e.

$$
A_{n}(x)=\sum_{i=0}^{n} a_{n i} x^{i}
$$

We can ask three different questions:
(1) Is A TP?

Lower Triangular Matrices and three types of TP

Let $A_{n}(x)$ denote the row generating polynomial of the $n^{\text {th }}$ row i.e.

$$
A_{n}(x)=\sum_{i=0}^{n} a_{n i} x^{i}
$$

We can ask three different questions:
(1) Is A TP?
(2) Are $A_{n}(x)$ negative real rooted, i.e., is the sequence $a_{n 0}, \ldots, a_{n n}, 0,0, \ldots$ Toeplitz-TP?

Lower Triangular Matrices and three types of TP

Let $A_{n}(x)$ denote the row generating polynomial of the $n^{\text {th }}$ row i.e.

$$
A_{n}(x)=\sum_{i=0}^{n} a_{n i} x^{i}
$$

We can ask three different questions:
(1) Is A TP?
(3) Are $A_{n}(x)$ negative real rooted, i.e., is the sequence $a_{n 0}, \ldots, a_{n n}, 0,0, \ldots$ Toeplitz-TP?
(3) Is the sequence of polynomials $\left(A_{n}(x)\right)_{n \geq 0}$ Hankel-TP?

Lower Triangular Matrices and three types of TP

Let $A_{n}(x)$ denote the row generating polynomial of the $n^{\text {th }}$ row i.e.

$$
A_{n}(x)=\sum_{i=0}^{n} a_{n i} x^{i}
$$

We can ask three different questions:
(1) Is A TP?
(3) Are $A_{n}(x)$ negative real rooted, i.e., is the sequence $a_{n 0}, \ldots, a_{n n}, 0,0, \ldots$ Toeplitz-TP?
(1 Is the sequence of polynomials $\left(A_{n}(x)\right)_{n \geq 0}$ Hankel-TP?
All three of these seem to be true for several important combinatorial triangles.

Example: Binomial Triangle

For A the triangle of binomial numbers,

$$
A=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & \ldots \\
1 & 1 & 0 & 0 & 0 & \ldots \\
1 & 2 & 1 & 0 & 0 & \ldots \\
1 & 3 & 3 & 1 & 0 & \ldots \\
1 & 4 & 6 & 4 & 1 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots &
\end{array}\right]
$$

Example: Binomial Triangle

For A the triangle of binomial numbers,

$$
A=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & \ldots \\
1 & 1 & 0 & 0 & 0 & \ldots \\
1 & 2 & 1 & 0 & 0 & \ldots \\
1 & 3 & 3 & 1 & 0 & \ldots \\
1 & 4 & 6 & 4 & 1 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots &
\end{array}\right]
$$

(1) A is TP by LGV lemma.

Example: Binomial Triangle

For A the triangle of binomial numbers,

$$
A=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & \ldots \\
1 & 1 & 0 & 0 & 0 & \ldots \\
1 & 2 & 1 & 0 & 0 & \ldots \\
1 & 3 & 3 & 1 & 0 & \ldots \\
1 & 4 & 6 & 4 & 1 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots &
\end{array}\right]
$$

(1) A is TP by LGV lemma.
(2) The row generating polynomials $A_{n}(x)=(1+x)^{n}$ are clearly negative real rooted and hence the sequence $\binom{n}{0}, \ldots,\binom{n}{n}$ is Toeplitz-TP.

Example: Binomial Triangle

For A the triangle of binomial numbers,

$$
A=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & \ldots \\
1 & 1 & 0 & 0 & 0 & \ldots \\
1 & 2 & 1 & 0 & 0 & \ldots \\
1 & 3 & 3 & 1 & 0 & \ldots \\
1 & 4 & 6 & 4 & 1 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots &
\end{array}\right]
$$

(1) A is TP by LGV lemma.
(2) The row generating polynomials $A_{n}(x)=(1+x)^{n}$ are clearly negative real rooted and hence the sequence $\binom{n}{0}, \ldots,\binom{n}{n}$ is Toeplitz-TP.
(0) The sequence $\left(A_{n}(x)\right)$ is Hankel-TP as we have the easy continued fraction expansion

$$
\sum_{n=0}^{\infty}(1+x)^{n} t^{n}=\frac{1}{1-(1+x) t}
$$

Structure

(3) Introduction

(2) Proof techniques and some special types of matrices
(1) LGV lemma
(2) Hankel matrices

- Toeplitz matrices
- Lower triangular matrices
© The Eulerian triangle

Ongoing joint work with X. Chen, A. Dyachenko, T. Gilmore, A.D. Sokal.

Ongoing joint work with X. Chen, A. Dyachenko, T. Gilmore, A.D. Sokal.

Eulerian Numbers

Eulerian Numbers

Descent of a permutation σ :

Eulerian Numbers

Descent of a permutation σ : Position i such that $\sigma(i)>\sigma(i+1)$.

Eulerian Numbers

Descent of a permutation σ : Position i such that $\sigma(i)>\sigma(i+1)$. $\operatorname{des}(\sigma)$: number of descents of σ.

Eulerian Numbers

Descent of a permutation σ : Position i such that $\sigma(i)>\sigma(i+1)$. $\operatorname{des}(\sigma)$: number of descents of σ.
Example: For $\sigma=943127685, \operatorname{des}(\sigma)=5$

Eulerian Numbers

Descent of a permutation σ : Position i such that $\sigma(i)>\sigma(i+1)$. $\operatorname{des}(\sigma)$: number of descents of σ.
Example: For $\sigma=943127685, \operatorname{des}(\sigma)=5$

Definition

The Eulerian number $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle$ is defined to be the cardinality of the set $\left\{\sigma \in \mathfrak{S}_{n} \mid \operatorname{des}(\sigma)=k\right\}$.

Eulerian Numbers

Definition

The Eulerian number $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle$ is defined to be the cardinality of the set $\left\{\sigma \in \mathfrak{S}_{n} \mid \operatorname{des}(\sigma)=k\right\}$.

Eulerian Numbers

Definition

The Eulerian number $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle$ is defined to be the cardinality of the set $\left\{\sigma \in \mathfrak{S}_{n} \mid \operatorname{des}(\sigma)=k\right\}$.

$$
\left(\left|\begin{array}{c}
n+1 \\
k
\end{array}\right|\right)_{n, k \geq 0}=\left[\begin{array}{ccccccc}
1 & & & & & & \\
1 & 1 & & & & & \\
1 & 4 & 1 & & & & \\
1 & 11 & 11 & 1 & & & \\
1 & 26 & 66 & 26 & 1 & & \\
1 & 57 & 302 & 302 & 57 & 1 & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Eulerian Triangle Conjecture

$$
\left(\left(\begin{array}{c}
n+1 \\
k
\end{array}\right\rangle\right)_{n, k \geq 0}=\left[\begin{array}{ccccccc}
1 & & & & & & \\
1 & 1 & & & & & \\
1 & 4 & 1 & & & & \\
1 & 11 & 11 & 1 & & & \\
1 & 26 & 66 & 26 & 1 & & \\
1 & 57 & 302 & 302 & 57 & 1 & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Conjecture (Brenti 1996)
The infinite lower triangular matrix $\left.\left(\begin{array}{c}n+1 \\ k\end{array}\right\rangle\right)_{n, k \geq 0}$ is $T P$.

Eulerian Triangle Conjecture

$$
\left(\left(\begin{array}{c}
n+1 \\
k
\end{array}\right\rangle\right)_{n, k \geq 0}=\left[\begin{array}{ccccccc}
1 & & & & & & \\
1 & 1 & & & & & \\
1 & 4 & 1 & & & & \\
1 & 11 & 11 & 1 & & & \\
1 & 26 & 66 & 26 & 1 & & \\
1 & 57 & 302 & 302 & 57 & 1 & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Conjecture (Brenti 1996)
The infinite lower triangular matrix $\left.\left(\begin{array}{c}n+1 \\ k\end{array}\right\rangle\right)_{n, k \geq 0}$ is $T P$.
Verified for 512×512 using Neville elimination.

Eulerian Triangle Conjecture

$$
\left(\left(\begin{array}{c}
n+1 \\
k
\end{array}\right\rangle\right)_{n, k \geq 0}=\left[\begin{array}{ccccccc}
1 & & & & & & \\
1 & 1 & & & & & \\
1 & 4 & 1 & & & & \\
1 & 11 & 11 & 1 & & & \\
1 & 26 & 66 & 26 & 1 & & \\
1 & 57 & 302 & 302 & 57 & 1 & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Conjecture (Brenti 1996)

The infinite lower triangular matrix $\left.\left(\begin{array}{c}n+1 \\ k\end{array}\right\rangle\right)_{n, k \geq 0}$ is $T P$.
Verified for 512×512 using Neville elimination.
Rational numbers with large denominators appear.

Eulerian Triangle Conjecture

$$
\left(\left(\begin{array}{c}
n+1 \\
k
\end{array}\right\rangle\right)_{n, k \geq 0}=\left[\begin{array}{ccccccc}
1 & & & & & & \\
1 & 1 & & & & & \\
1 & 4 & 1 & & & & \\
1 & 11 & 11 & 1 & & & \\
1 & 26 & 66 & 26 & 1 & & \\
1 & 57 & 302 & 302 & 57 & 1 & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Conjecture (Brenti 1996)

The infinite lower triangular matrix $\left.\left(\begin{array}{c}n+1 \\ k\end{array}\right\rangle\right)_{n, k \geq 0}$ is $T P$.
Verified for 512×512 using Neville elimination.
Rational numbers with large denominators appear.
General pattern not clear.

Stirling subset triangle

Entries $\left\{\begin{array}{c}n+1 \\ k\end{array}\right\}$: set partitions of $\{1, \ldots, n+1\}$ with k blocks

$$
\left[\begin{array}{cccccc}
1 & & & & & \\
1 & 1 & & & & \\
1 & 3 & 1 & & & \\
1 & 7 & 6 & 1 & & \\
1 & 15 & 25 & 10 & 1 & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Stirling subset triangle

Entries $\left\{\begin{array}{c}n+1 \\ k\end{array}\right\}$: set partitions of $\{1, \ldots, n+1\}$ with k blocks
$\left[\begin{array}{cccccc}1 & & & & & \\ 1 & 1 & & & & \\ 1 & 3 & 1 & & & \\ 1 & 7 & 6 & 1 & & \\ 1 & 15 & 25 & 10 & 1 & \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots\end{array}\right]$

Brenti (1995) showed that this matrix is TP

Example 4: Reversed Stirling cycle triangle

Original Matrix
$\left[\begin{array}{cccccc}1 & & & & & \\ 1 & 1 & & & & \\ 2 & 3 & 1 & & & \\ 6 & 11 & 6 & 1 & & \\ 24 & 50 & 35 & 10 & 1 & \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots\end{array}\right]$

Reversal
$\left[\begin{array}{cccccc}1 & & & & & \\ 1 & 1 & & & & \\ 1 & 3 & 2 & & & \\ 1 & 6 & 11 & 6 & & \\ 1 & 10 & 35 & 50 & 24 & \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots\end{array}\right]$

Reversed Stirling Subset Triangle

Reversed Stirling subset triangle:

$$
\left(\left\{\begin{array}{c}
n+1 \\
k
\end{array}\right\}^{\mathrm{rev}}\right)_{n, k \geq 0}=\left(\left\{\begin{array}{c}
n+1 \\
n-k+1
\end{array}\right\}\right)_{n, k \geq 0}=\left[\begin{array}{ccccccc}
1 & & & & & \\
1 & 1 & & & & \\
1 & 3 & 1 & & & \\
1 & 6 & 7 & 1 & & \\
1 & 10 & 25 & 15 & 1 & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Conjecture (Us 2019)

The infinite lower triangular matrix $\left(\left\{\begin{array}{c}n+1 \\ k\end{array}\right\}^{\text {rev }}\right)_{n, k \geq 0}=\left(\left\{\begin{array}{c}n+1 \\ n-k+1\end{array}\right\}\right)_{n, k \geq 0}$ is TP.

A comparision of the two triangles

Reversed Stirling subset triangle:

$$
\left(\left\{\begin{array}{c}
n+1 \\
k
\end{array}\right\}^{\mathrm{rev}}\right)_{n, k \geq 0}=\left[\begin{array}{cccccc}
1 & & & & & \\
1 & 1 & & & & \\
1 & 3 & 1 & & & \\
1 & 6 & 7 & 1 & & \\
1 & 10 & 25 & 15 & 1 & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Eulerian triangle:

$$
\left(\binom{n+1}{k}\right)_{n, k \geq 0}=\left[\begin{array}{cccccc}
1 & & & & & \\
1 & 1 & & & & \\
1 & 4 & 1 & & & \\
1 & 11 & 11 & 1 & & \\
1 & 26 & 66 & 26 & 1 & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

A comparision of the two triangles

Reversed Stirling subset triangle:

$$
\begin{gathered}
\left(\left\{\begin{array}{c}
n+1 \\
k
\end{array}\right\}^{\mathrm{rev}}\right)_{n, k \geq 0}=\left[\begin{array}{cccccc}
1 & & & & & \\
1 & 1 & & & & \\
1 & 3 & 1 & & & \\
1 & 6 & 7 & 1 & & \\
1 & 10 & 25 & 15 & 1 & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right] \\
A_{n, k}=(n-k+1) A_{n-1, k-1}+1 \cdot A_{n-1, k}
\end{gathered}
$$

Eulerian triangle:

$$
\begin{aligned}
& \left(\binom{n+1}{k}\right)_{n, k \geq 0}=\left[\begin{array}{cccccc}
1 & & & & & \\
1 & 1 & & & & \\
1 & 4 & 1 & & & \\
1 & 11 & 11 & 1 & & \\
1 & 26 & 66 & 26 & 1 & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right] \\
& A_{n, k}=(n-k+1) A_{n-1, k-1}+(k+1) A_{n-1, k}
\end{aligned}
$$

A comparision of the two triangles

Reversed Stirling subset triangle:

$$
\begin{gathered}
\left(\left\{\begin{array}{c}
n+1 \\
k
\end{array}\right\}^{\mathrm{rev}}\right)_{n, k \geq 0}=\left[\begin{array}{ccccccc}
1 & & & & & \\
1 & 1 & & & & \\
1 & 3 & 1 & & & \\
1 & 6 & 7 & 1 & & \\
1 & 10 & 25 & 15 & 1 & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right] \\
A_{n, k}=(n-k+1) A_{n-1, k-1}+1 \cdot A_{n-1, k}
\end{gathered}
$$

Eulerian triangle:
Introduce variables

$$
\begin{aligned}
& \left(\binom{n+1}{k}\right)_{n, k \geq 0}=\left[\begin{array}{cccccc}
1 & & & & & \\
1 & 1 & & & & \\
1 & 4 & 1 & & & \\
1 & 11 & 11 & 1 & & \\
1 & 26 & 66 & 26 & 1 & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right] \\
& A_{n, k}=(n-k+1) A_{n-1, k-1}+(k+1) A_{n-1, k}
\end{aligned}
$$

Putting variables in the recurrence

Replace

$$
\begin{gathered}
A_{n, k}=(n-k+1) A_{n-1, k-1}+(k+1) A_{n-1, k} \\
A_{n, k}=(n-k+1) A_{n-1, k-1}+1 \cdot A_{n-1, k}
\end{gathered}
$$

Introduce variables a, c, d, e.

$$
A_{n, k}=[a(n-k)+c] A_{n-1, k-1}+(d k+e) A_{n-1, k}
$$

Putting variables in the recurrence

Replace

$$
\begin{gathered}
A_{n, k}=(n-k+1) A_{n-1, k-1}+(k+1) A_{n-1, k} \\
A_{n, k}=(n-k+1) A_{n-1, k-1}+1 \cdot A_{n-1, k}
\end{gathered}
$$

Introduce variables a, c, d, e.

$$
A_{n, k}=[a(n-k)+c] A_{n-1, k-1}+(d k+e) A_{n-1, k}
$$

Is it coefficientwise TP?

Putting variables in the recurrence

Replace

$$
\begin{gathered}
A_{n, k}=(n-k+1) A_{n-1, k-1}+(k+1) A_{n-1, k} \\
A_{n, k}=(n-k+1) A_{n-1, k-1}+1 \cdot A_{n-1, k}
\end{gathered}
$$

Introduce variables a, c, d, e.

$$
A_{n, k}=[a(n-k)+c] A_{n-1, k-1}+(d k+e) A_{n-1, k}
$$

Is it coefficientwise TP? More general conjecture!

Putting variables in the recurrence

Replace

$$
\begin{gathered}
A_{n, k}=(n-k+1) A_{n-1, k-1}+(k+1) A_{n-1, k} \\
A_{n, k}=(n-k+1) A_{n-1, k-1}+1 \cdot A_{n-1, k}
\end{gathered}
$$

Introduce variables a, c, d, e.

$$
A_{n, k}=[a(n-k)+c] A_{n-1, k-1}+(d k+e) A_{n-1, k}
$$

Is it coefficientwise TP? More general conjecture!
Empirically True till 13×13

Special Cases

$$
A_{n, k}=[a(n-k)+c] A_{n-1, k-1}+(d k+e) A_{n-1, k}
$$

Special cases:
(a, c, d, e)

Matrix obtained

Special Cases

$$
A_{n, k}=[a(n-k)+c] A_{n-1, k-1}+(d k+e) A_{n-1, k}
$$

Special cases:

(a, c, d, e)	Matrix obtained
$(1,1,1,1)$	clean Eulerian triangle, conjecture
$(1,0,1,1)$	shifted Eulerian triangle, conjecture
$(1,1,1,0)$	shifted Eulerian triangle, conjecture

Special Cases

$$
A_{n, k}=[a(n-k)+c] A_{n-1, k-1}+(d k+e) A_{n-1, k}
$$

Special cases:

(a, c, d, e)	Matrix obtained
$(1,1,1,1)$	clean Eulerian triangle, conjecture
$(1,0,1,1)$	shifted Eulerian triangle, conjecture
$(1,1,1,0)$	shifted Eulerian triangle, conjecture
$(0,1,0,1)$	Binomial triangle, TP

Special Cases

$$
A_{n, k}=[a(n-k)+c] A_{n-1, k-1}+(d k+e) A_{n-1, k}
$$

Special cases:

(a, c, d, e)	Matrix obtained
$(1,1,1,1)$	clean Eulerian triangle, conjecture
$(1,0,1,1)$	shifted Eulerian triangle, conjecture
$(1,1,1,0)$	shifted Eulerian triangle, conjecture
$(0,1,0,1)$	Binomial triangle, TP
$(0,1,1,1)$	Stirling subset numbers, TP proved by Brenti 1995

Special Cases

$$
A_{n, k}=[a(n-k)+c] A_{n-1, k-1}+(d k+e) A_{n-1, k}
$$

Special cases:

(a, c, d, e)	Matrix obtained
$(1,1,1,1)$	clean Eulerian triangle, conjecture
$(1,0,1,1)$	shifted Eulerian triangle, conjecture
$(1,1,1,0)$	shifted Eulerian triangle, conjecture
$(0,1,0,1)$	Binomial triangle, TP
$(0,1,1,1)$	Stirling subset numbers, TP proved by Brenti 1995
$(1,1,0,1)$	Row reversed matrix of Stirling subset numbers, conjecture

$$
\begin{aligned}
T(n, k)= & (n-k+1) T(n-1, k-1) \\
& +(k+1) T(n-1, k) \\
T(n, k)= & {[a(n-k)+c] T(n-1, k-1) } \\
& +(d k+e) T(n-1, k)
\end{aligned}
$$

Special Cases

$$
A_{n, k}=[a(n-k)+c] A_{n-1, k-1}+(d k+e) A_{n-1, k}
$$

Special cases:

(a, c, d, e)	Matrix obtained
$(1,1,1,1)$	clean Eulerian triangle, conjecture
$(1,0,1,1)$	shifted Eulerian triangle, conjecture
$(1,1,1,0)$	shifted Eulerian triangle, conjecture
$(0,1,0,1)$	Binomial triangle, TP
$(0,1,1,1)$	Stirling subset numbers, TP proved by Brenti 1995
$(\mathbf{1}, \mathbf{1}, \mathbf{0}, \mathbf{1})$	Row reversed matrix of Stirling subset numbers, conjecture

Special Cases

$$
A_{n, k}=[a(n-k)+c] A_{n-1, k-1}+(d k+e) A_{n-1, k}
$$

Special cases:

(a, c, d, e)	Matrix obtained
$(1,1,1,1)$	clean Eulerian triangle, conjecture
$(1,0,1,1)$	shifted Eulerian triangle, conjecture
$(1,1,1,0)$	shifted Eulerian triangle, conjecture
$(0,1,0,1)$	Binomial triangle, TP
$(0,1,1,1)$	Stirling subset numbers, TP proved by Brenti 1995
$(\mathbf{1}, \mathbf{1}, \mathbf{0}, \mathbf{1})$	Row reversed matrix of Stirling subset numbers, eonjecture

Special Cases

$$
A_{n, k}=[a(n-k)+c] A_{n-1, k-1}+(d k+e) A_{n-1, k}
$$

Special cases:

(a, c, d, e)	Matrix obtained
$(1,1,1,1)$	clean Eulerian triangle, conjecture
$(1,0,1,1)$	shifted Eulerian triangle, conjecture
$(1,1,1,0)$	shifted Eulerian triangle, conjecture
$(0,1,0,1)$	Binomial triangle, TP
$(0,1,1,1)$	Stirling subset numbers, TP proved by Brenti 1995
$(\mathbf{1}, \mathbf{1}, \mathbf{0}, \mathbf{1})$	Row reversed matrix of Stirling subset numbers, eonjecture

https://arxiv.org/pdf/2012.03629.pdf
FPSAC 2021

ace triangle

Reversed Stirling subset triangle

$$
\left(\left\{\begin{array}{c}
n+1 \\
k
\end{array}\right\}^{\mathrm{rev}}\right)_{n, k \geq 0}=\left[\begin{array}{ccccccc}
1 & & & & & \\
1 & 1 & & & & \\
1 & 3 & 1 & & & \\
1 & 6 & 7 & 1 & & \\
1 & 10 & 25 & 15 & 1 & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right] .
$$

ace triangle

ace triangle

$$
\left[\begin{array}{ccccc}
1 & & & & \\
e & c & c^{2} & & \\
e^{2} & a e+2 c e & a^{2} e+3 a c e+3 c^{2} e & c^{3} & \\
e^{3} & 3 a e^{2}+3 c e^{2} & \vdots a c e^{2}+6 c^{2} e^{2} & a^{3} e+4 a^{2} c e+6 a c^{2} e+4 c^{3} e & c^{4} \\
e^{4} & 6 a e^{3}+4 c e^{3} & 7 a^{2} e^{2}+12 a & \vdots & \ddots
\end{array}\right]
$$

recurrence

$$
A_{n, k}=[a(n-k)+c] A_{n-1, k-1}+e A_{n-1, k}
$$

ace triangle

ace triangle

$$
\left[\begin{array}{ccccc}
1 & & & & \\
e & c & c^{2} & & \\
e^{2} & a e+2 c e & a^{2} e+3 a c e+3 c^{2} e & c^{3} & \\
e^{3} & 3 a e^{2}+3 c e^{2} & \vdots a c e^{2}+6 c^{2} e^{2} & a^{3} e+4 a^{2} c e+6 a c^{2} e+4 c^{3} e & c^{4} \\
e^{4} & 6 a e^{3}+4 c e^{3} & 7 a^{2} e^{2}+12 a c e^{2} \\
\vdots & \vdots & \vdots & \vdots & \vdots
\end{array}\right] .
$$

recurrence

$$
A_{n, k}=[a(n-k)+c] A_{n-1, k-1}+e A_{n-1, k}
$$

Also satisfies the alternate recurrence:

$$
A_{n, k}=c A_{n-1, k-1}+\sum_{m=0}^{n-1}\binom{n-1}{m} a^{m} e A_{n-1-m, k-m}
$$

ace triangle

ace triangle

$$
\left[\begin{array}{ccccc}
1 & & & & \\
e & c & c^{2} & & \\
e^{2} & a e+2 c e & a^{2} e+3 a c e+3 c^{2} e & c^{3} & \\
e^{3} & 3 a e^{2}+3 c e^{2} & \vdots a c e^{2}+6 c^{2} e^{2} & a^{3} e+4 a^{2} c e+6 a c^{2} e+4 c^{3} e & c^{4} \\
e^{4} & 6 a e^{3}+4 c e^{3} & 7 a^{2} e^{2}+12 a & \vdots & \ddots
\end{array}\right]
$$

recurrence

$$
A_{n, k}=[a(n-k)+c] A_{n-1, k-1}+e A_{n-1, k}
$$

Also satisfies the alternate recurrence:

$$
A_{n, k}=c A_{n-1, k-1}+\sum_{m=0}^{n-1}\binom{n-1}{m} a^{m} e A_{n-1-m, k-m}
$$

We have two and a half proofs:

- Two Digraph proofs using the Lindström-Gessel-Viennot lemma
- Alternate recurrence
- Direct bijection
- Algebraic proof

An ace digraph

An ace digraph

We have a weight preserving bijection between paths from $u_{n} \rightarrow v_{k}$ and set partitions of $\{1, \ldots, n+1\}$ into $n-k+1$ parts.

$$
\begin{aligned}
T(n, k)= & (n-k+1) T(n-1, k-1) \\
& +(k+1) T(n-1, k)
\end{aligned}
$$

Eulerian triangle conjecture
$T(n, k)=[a(n-k)+c] T(n-1, k-1)$

$$
+(d k+e) T(n-1, k)
$$

acde conjecture

Meme images from internet.

