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Cycle classification

For a permutation σ, compare each i with σ(i) and σ−1(i):

cycle valley σ−1(i) > i < σ(i)

cycle peaks σ−1(i) < i > σ(i)

cycle double rise σ−1(i) < i < σ(i)

cycle double fall σ−1(i) > i > σ(i)

fixed point i = σ(i) = σ−1(i)
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Record classification

Consider σ as σ(1)σ(2) . . . σ(n):

i is record if for every j < i we have σ(j) < σ(i)
left-to-right-maxima

i is antirecord if for every i > j we have σ(i) < σ(j)
right-to-left-minima

Each i is one of the following four types:

rar - record-antirecord

erec - exclusive record

earec - exclusive antirecord

nrar - neither record-antirecord
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Record-and-cycle classification

Each i is one of the following ten (not 20) types:

cpeak cval cdrise cdfall fix
erec ereccval ereccdrise
earec eareccpeak eareccdfall

rar rar
nrar nrcpeak nrcval nrcdrise nrcdfall nrfix
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Continued fractions counting permutation statistics

Consider 10-variable polynomials

Pn(x1, x2, y1, y2, u1, u2, v1, v2,w, z) =

∑
σ∈Sn

x
eareccpeak(σ)
1 x

eareccdfall(σ)
2 y

ereccval(σ)
1 y

ereccdrise(σ)
2 zrar(σ)

×

u
nrcpeak(σ)
1 u

nrcdfall(σ)
2 v

nrcval(σ)
1 v

nrcdrise(σ)
2 wnrfix(σ)

Theorem (Sokal–Zeng (2022) First J-fraction for permutations)

∞
∑
n=0

Pn(x1, x2, y1, y2, u1, u2, v1, v2,w, z)t
n

=
1

1 − z ⋅ t −
x1 y1 ⋅ t

2

1 − (x2 + y2 +w) ⋅ t −
(x1 + u1)(y1 + v1) ⋅ t

2

1 − ((x2 + u2) + (y2 + v2) +w) ⋅ t −
(x1 + 2u1)(y1 + 2v1) ⋅ t

2

1 − ⋱

Proof uses the Foata–Zeilberger bijection (1990)
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Can we count cycles as well?

Consider 11-variable polynomials

Pn(x1, x2, y1, y2, u1, u2, v1, v2,w, z) =

∑
σ∈Sn

x
eareccpeak(σ)
1 x

eareccdfall(σ)
2 y

ereccval(σ)
1 y

ereccdrise(σ)
2 zrar(σ)

×

u
nrcpeak(σ)
1 u

nrcdfall(σ)
2 v

nrcval(σ)
1 v

nrcdrise(σ)
2 wnrfix(σ)λcyc(σ)

No nice J-fraction!
But can obtain J-fraction by specialising y1 = v1:

Conjecture (Sokal–Zeng (2022))
∞
∑
n=0

Pn(x1, x2, y1, y2, u1, u2, y1, v2,w, z, λ)t
n

=
1

1 − λz ⋅ t −
λx1 y1 ⋅ t

2

1 − (x2 + y2 + λw) ⋅ t −
(λ + 1)(x1 + u1)y1 ⋅ t

2

1 − ((x2 + v2) + (y2 + v2) + λw) ⋅ t −
(λ + 2)(x1 + 2u1)y1 ⋅ t

2

1 − ⋱
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Sokal–Zeng conjectured a continued fraction for 11 variable polynomials
involving one specialisation y1 = v1.

They could only prove with two specialisations y1 = v1 and y2 = v2

Second J-fraction for permutations

Used Biane bijection (1993).

Twist in story:
Can prove their full conjecture using Foata–Zeilberger bijection

We can count cycles in the Foata–Zeilberger bijection
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excedance indices F = {i ∈ σ ∶ σ(i) > i} = Cdrise ∪ Cval

excedance values F ′
= {i ∈ σ ∶ i > σ−1

(i)} = Cdrise ∪ Cpeak
antiexcedance indices G = {i ∈ σ ∶ σ(i) < i} = Cdfall ∪ Cpeak
antiexcedance values G′

= {i ∈ σ ∶ i < σ−1
(i)} = Cdfall ∪ Cval

fixed points H = {i ∈ σ ∶ i = σ(i)} = Fix

A permutation can be fully described the following data:

Sets F,F ′,G,G′,H
σ∣F ∶ F → F ′

σ∣G ∶ G→ G′

8 17
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Foata–Zeilberger bijection

Foata–Zeilberger bijection:

σ ↦ (ω, ξ)

where

ω is a Motzkin path, where the level steps come in three different
colours (red, blue, green)
Correspond to F,F ′,G,G′,H
ξ = (ξ1, . . . , ξn) are labels on the steps of the Motzkin paths
Correspond to σ∣F ∶ F → F ′ and σ∣G ∶ G→ G′
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Description of σ → ω

If i is a cycle valley, step i is ↗

If i is a cycle peak, step i is ↘

If i is a cycle double rise, cycle double fall or fixed, step i is →, → or
→ respectively.
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Description of labels σ → ξ

For i ∈ [n]

ξi =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

#{j∶ j < i and σ(j) > σ(i)} if σ(i) > i if i ∈ Cval ∪ Cdrise

#{j∶ j > i and σ(j) < σ(i)} if σ(i) < i if i ∈ Cpeak ∪ Cdfall

0 if σ(i) = i if i ∈ Fix
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An example

Let σ = 715492638 = (1762)(3598)(4) ∈S9.

- Cval = {1,3} - Cpeak = {7,9} - Cdrise = {5} -
Cdfall = {2,6,8}

- Fix = {4}

The Motzkin path ω is

The labels ξ and the sets F,F ′,G,G′ are:
i ∈ F 1 3 5

σ(i) ∈ F ′ 7 5 9
ξi 0 1 0

i ∈ G 2 6 7 8 9
σ(i) ∈ G′ 1 2 6 3 8

ξi 0 0 1 0 0

12 17
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Laguerre digraph

Definition

A Laguerre digraph of size n is a directed graph on vertex set {1, . . . , n}
where each vertex has indegree 0 or 1 and outdegree 0 or 1.

Example:

Connected components

Directed cycle

Directed paths

Generalise permutations

13 17



Laguerre digraph

Definition

A Laguerre digraph of size n is a directed graph on vertex set {1, . . . , n}
where each vertex has indegree 0 or 1 and outdegree 0 or 1.

Example:

Connected components

Directed cycle

Directed paths

Generalise permutations

13 17



Laguerre digraph

Definition

A Laguerre digraph of size n is a directed graph on vertex set {1, . . . , n}
where each vertex has indegree 0 or 1 and outdegree 0 or 1.

Example:

Connected components

Directed cycle

Directed paths

Generalise permutations

13 17



Laguerre digraph

Definition

A Laguerre digraph of size n is a directed graph on vertex set {1, . . . , n}
where each vertex has indegree 0 or 1 and outdegree 0 or 1.

Example:

Connected components

Directed cycle

Directed paths

Generalise permutations

13 17



“History” of Foata–Zeilberger bijection

Start with all n vertices and no edges

At each stage insert edges i→ σ(i) in the following order:

Stage (a): i ∈H (fixed points) in increasing order

Stage (b): i ∈ G (antiexcedances) in increasing order

Stage (c): i ∈ F (excedances) in decreasing order

This order is suggested by the inverse bijection and the inversion tables

14 17
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Stage (b): i ∈ G (antiexcedances) in increasing order

Stage (c): i ∈ F (excedances) in decreasing order

This order is suggested by the inverse bijection and the inversion tables
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History with an example

Let σ = 715492638 = (1762)(3598)(4) ∈S9.

H = {4}

i ∈ F 1 3 5
σ(i) ∈ F ′ 7 5 9

ξi 0 1 0

i ∈ G 2 6 7 8 9
σ(i) ∈ G′ 1 2 6 3 8

ξi 0 0 1 0 0
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Story continues ....

This resolves the Sokal–Zeng conjecture (2022) for permutations

Resolved a 4-variable conjectured continued fraction due to
Randrianarivony–Zeng (1996) for Genocchi numbers

Similar to Sokal–Zeng, have generalised these continued fractions to
families of infinitely many variables
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Thank you
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